Publications by authors named "Bryant B Chhun"

Article Synopsis
  • Researchers have developed a new label-free computational microscopy technique called PT imaging (PTI) that allows for 3D imaging of biomolecules by measuring their permittivity tensor (PT), which reveals how they interact with light.
  • PTI utilizes oblique illumination and polarization-sensitive detection to encode PT into images, tackling previous challenges in achieving high-resolution imaging of various biological samples such as mouse brain tissue and infected cells.
  • This method outperforms older techniques and comes with open-source software and modular hardware, making it accessible for wider adoption in the scientific community.
View Article and Find Full Text PDF

A multiplexed enzyme-linked immunosorbent assay (ELISA) that simultaneously measures antibody binding to multiple antigens can extend the impact of serosurveillance studies, particularly if the assay approaches the simplicity, robustness, and accuracy of a conventional single-antigen ELISA. Here, we report on the development of multiSero, an open-source multiplex ELISA platform for measuring antibody responses to viral infection. Our assay consists of three parts: (1) an ELISA against an array of proteins in a 96-well format; (2) automated imaging of each well of the ELISA array using an open-source plate reader; and (3) automated measurement of optical densities for each protein within the array using an open-source analysis pipeline.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to map out how human cells are organized by using a combination of advanced techniques involving genome engineering, imaging, and data analysis.
  • Researchers identified specific protein localization patterns that help reveal molecular interactions and functional communities within the cell.
  • Their findings, along with an interactive website, provide valuable tools for understanding the complex networks that govern cellular organization.
View Article and Find Full Text PDF

A cell's shape and motion represent fundamental aspects of cell identity and can be highly predictive of function and pathology. However, automated analysis of the morphodynamic states remains challenging for most cell types, especially primary human cells where genetic labeling may not be feasible. To enable automated and quantitative analysis of morphodynamic states, we developed DynaMorph-a computational framework that combines quantitative live cell imaging with self-supervised learning.

View Article and Find Full Text PDF

Microglia are resident macrophages in the brain that emerge in early development and respond to the local environment by altering their molecular and phenotypic states. Fundamental questions about microglia diversity and function during development remain unanswered because we lack experimental strategies to interrogate their interactions with other cell types and responses to perturbations ex vivo. We compared human microglia states across culture models, including cultured primary and pluripotent stem cell-derived microglia.

View Article and Find Full Text PDF

Serology has provided valuable diagnostic and epidemiological data on antibody responses to SARS-CoV-2 in diverse patient cohorts. Deployment of high content, multiplex serology platforms across the world, including in low and medium income countries, can accelerate longitudinal epidemiological surveys. Here we report multiSero, an open platform to enable multiplex serology with up to 48 antigens in a 96-well format.

View Article and Find Full Text PDF

We report quantitative label-free imaging with phase and polarization (QLIPP) for simultaneous measurement of density, anisotropy, and orientation of structures in unlabeled live cells and tissue slices. We combine QLIPP with deep neural networks to predict fluorescence images of diverse cell and tissue structures. QLIPP images reveal anatomical regions and axon tract orientation in prenatal human brain tissue sections that are not visible using brightfield imaging.

View Article and Find Full Text PDF

Structured-illumination microscopy can double the resolution of the widefield fluorescence microscope but has previously been too slow for dynamic live imaging. Here we demonstrate a high-speed structured-illumination microscope that is capable of 100-nm resolution at frame rates up to 11 Hz for several hundred time points. We demonstrate the microscope by video imaging of tubulin and kinesin dynamics in living Drosophila melanogaster S2 cells in the total internal reflection mode.

View Article and Find Full Text PDF