Climate change is affecting Arctic ecosystems, including parasites. Predicting outcomes for host-parasite systems is challenging due to the complexity of multi-species interactions and the numerous, interacting pathways by which climate change can alter dynamics. Increasing temperatures may lead to faster development of free-living parasite stages but also higher mortality.
View Article and Find Full Text PDFClimate change is expected to alter the dynamics of infectious diseases around the globe. Predictive models remain elusive due to the complexity of host-parasite systems and insufficient data describing how environmental conditions affect various system components. Here, we link host-macroparasite models with the Metabolic Theory of Ecology, providing a mechanistic framework that allows integrating multiple nonlinear environmental effects to estimate parasite fitness under novel conditions.
View Article and Find Full Text PDFLarval inhibition is a common strategy of Trichostrongylidae nematodes that may increase survival of larvae during unfavourable periods and concentrate egg production when conditions are favourable for development and transmission. We investigated the propensity for larval inhibition in a population of Ostertagia gruehneri, the most common gastrointestinal Trichostrongylidae nematode of Rangifer tarandus. Initial experimental infections of 4 reindeer with O.
View Article and Find Full Text PDFParasites play an important role in the structure and function of arctic ecosystems, systems that are currently experiencing an unprecedented rate of change due to various anthropogenic perturbations, including climate change. Ungulates such as muskoxen, caribou, moose and Dall's sheep are also important components of northern ecosystems and are a source of food and income, as well as a focus for maintenance of cultural traditions, for northerners. Parasites of ungulates can influence host health, population dynamics and the quality, quantity and safety of meat and other products of animal origin consumed by people.
View Article and Find Full Text PDFClimate change in the Arctic is anticipated to alter the ecology of northern ecosystems, including the transmission dynamics of many parasite species. One parasite of concern is Ostertagia gruehneri, an abomasal nematode of Rangifer ssp. that causes reduced food intake, weight loss, and decreased pregnancy rates in reindeer.
View Article and Find Full Text PDFInt J Syst Evol Microbiol
November 2007
Ten isolates of an unknown Campylobacter species were isolated from cloacal swabs obtained from captive adult whooping cranes (Grus americana). All isolates were identified as Campylobacter based on generic PCR and grouped with other Campylobacter species based on 23S rRNA gene sequence. None of the isolates could be identified by species-specific PCR for known taxa, and all ten isolates formed a robust clade that was very distinct from known Campylobacter species based on 16S rRNA, rpoB and cpn60 gene sequences.
View Article and Find Full Text PDFThe enteric flora of captive whooping cranes (Grus americana) and sandhill cranes (Grus canadensis) has not been well described, despite its potential importance in the understanding of both the normal condition of the intestinal physiology of these animals and the altered colonization within disease states in these birds. Nineteen whooping cranes and 23 sandhill cranes housed currently at the Calgary Zoo or its affiliated Devonian Wildlife Conservation Centre (DWCC) in Calgary, Alberta were sampled from October 2004-February 2005 by collecting aerobic and anaerobic cloacal swabs from each bird. There were seven major groupings of bacteria isolated from both species of crane.
View Article and Find Full Text PDF