Purpose: A barrier to widespread adoption of chimeric antigen receptor (CAR) T-cell therapy is toxicity. To address this, we recently developed a novel antibody-T-cell receptor (AbTCR) platform (trademarked as ARTEMIS) which was designed to leverage natural immune receptor signaling and regulation. The AbTCR platform includes a gamma/delta (γδ) TCR-based AbTCR construct and a separate co-stimulatory molecule, both engineered to be tumor-specific.
View Article and Find Full Text PDFIntratumoral heterogeneity is a common feature of many myeloid leukemias and a significant reason for treatment failure and relapse. Thus, identifying the cells responsible for residual disease and leukemia re-growth is critical to better understanding how they are regulated. Here, we show that a knock-in reporter mouse for the stem cell gene Musashi 2 (Msi2) allows identification of leukemia stem cells in aggressive myeloid malignancies, and provides a strategy for defining their core dependencies.
View Article and Find Full Text PDFThe clinical use of genetically modified T-cell therapies has led to unprecedented response rates in leukemia and lymphoma patients treated with anti-CD19 chimeric antigen receptor (CAR)-T. Despite this clinical success, FDA-approved T-cell therapies are currently limited to B-cell malignancies, and challenges remain with managing cytokine-related toxicities. We have designed a novel antibody-T-cell receptor (AbTCR) platform where we combined the Fab domain of an antibody with the γ and δ chains of the TCR as the effector domain.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a metabolic disease frequently associated with impaired bone healing. Despite its increasing prevalence worldwide, the molecular etiology of DM-linked skeletal complications remains poorly defined. Using advanced stem cell characterization techniques, we analyzed intrinsic and extrinsic determinants of mouse skeletal stem cell (mSSC) function to identify specific mSSC niche-related abnormalities that could impair skeletal repair in diabetic (Db) mice.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2016
Inflammation disrupts tissue architecture and function, thereby contributing to the pathogenesis of diverse diseases; the signals that promote or restrict tissue inflammation thus represent potential targets for therapeutic intervention. Here, we report that genetic or pharmacologic Hedgehog pathway inhibition intensifies colon inflammation (colitis) in mice. Conversely, genetic augmentation of Hedgehog response and systemic small-molecule Hedgehog pathway activation potently ameliorate colitis and restrain initiation and progression of colitis-induced adenocarcinoma.
View Article and Find Full Text PDFPancreatic intraepithelial neoplasia is a pre-malignant lesion that can progress to pancreatic ductal adenocarcinoma, a highly lethal malignancy marked by its late stage at clinical presentation and profound drug resistance. The genomic alterations that commonly occur in pancreatic cancer include activation of KRAS2 and inactivation of p53 and SMAD4 (refs 2-4). So far, however, it has been challenging to target these pathways therapeutically; thus the search for other key mediators of pancreatic cancer growth remains an important endeavour.
View Article and Find Full Text PDFAsymmetric division is an evolutionarily conserved process that generates daughter cells with different fates through the unequal partitioning of fate determinants. While asymmetric division is critically important in generating diversity during development, its dysregulation can also promote oncogenesis. In particular, signals that shift the normal balance of symmetric and asymmetric division can lead to a differentiation arrest and trigger cancer progression.
View Article and Find Full Text PDFCell fate can be controlled through asymmetric division and segregation of protein determinants, but the regulation of this process in the hematopoietic system is poorly understood. Here we show that the dynein-binding protein Lis1 is critically required for hematopoietic stem cell function and leukemogenesis. Conditional deletion of Lis1 (also known as Pafah1b1) in the hematopoietic system led to a severe bloodless phenotype, depletion of the stem cell pool and embryonic lethality.
View Article and Find Full Text PDFCancer stem cells lie at the root of chronic myelogenous leukemia (CML) and mediate its continued growth. Their resistance to current therapies results in an inability to eradicate the disease. In this issue of Cancer Cell, Li et al.
View Article and Find Full Text PDFChronic myelogenous leukaemia (CML) can progress from a slow growing chronic phase to an aggressive blast crisis phase, but the molecular basis of this transition remains poorly understood. Here we have used mouse models of CML to show that disease progression is regulated by the Musashi-Numb signalling axis. Specifically, we find that the chronic phase is marked by high levels of Numb expression whereas the blast crisis phase has low levels of Numb expression, and that ectopic expression of Numb promotes differentiation and impairs advanced-phase disease in vivo.
View Article and Find Full Text PDF