Publications by authors named "Bryan Yipp"

Influenza viruses are a major global cause of morbidity and mortality. Vagal TRPV1 nociceptive sensory neurons, which innervate the airways, are known to mediate defenses against harmful agents. However, their function in lung antiviral defenses remains unclear.

View Article and Find Full Text PDF

Background: The Berlin definition of acute respiratory distress syndrome (ARDS) includes only clinical characteristics. Understanding unique patient pathobiology may allow personalized treatment. We aimed to define and describe ARDS phenotypes/endotypes combining clinical and pathophysiologic parameters from a Canadian ARDS cohort.

View Article and Find Full Text PDF

Infections of the lung cause observable sickness thought to be secondary to inflammation. Signs of sickness are crucial to alert others via behavioral-immune responses to limit contact with contagious individuals. Gram-negative bacteria produce exopolysaccharide (EPS) that provides microbial protection; however, the impact of EPS on sickness remains uncertain.

View Article and Find Full Text PDF

Neutrophils are heterogeneous, but the mechanisms underlying their ability to polarize remain unclear. In this issue of Immunity, Gour et al. demonstrate that the GPCR Mrgpra1 and the neuropeptide NPFF, molecules involved in pain and itch, direct neutrophil polarization that impacts host defense and pneumonia susceptibility.

View Article and Find Full Text PDF

The phenomenon of swarming has long been observed in nature as a strategic event that serves as a good offense toward prey and predators. Imaging studies have uncovered that neutrophils employ this swarm-like tactic within infected and inflamed tissues as part of the innate immune response. Much of our understanding of neutrophil swarming builds from observations during sterile inflammation and various bacterial, fungal, and parasitic infections of the skin.

View Article and Find Full Text PDF

Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank.

View Article and Find Full Text PDF

During bloodstream infections, neutrophils home to the liver as part of an intravascular immune response to eradicate blood-borne pathogens, but the mechanisms regulating this crucial response are unknown. Using in vivo imaging of neutrophil trafficking in germ-free and gnotobiotic mice, we demonstrate that the intestinal microbiota guides neutrophil homing to the liver in response to infection mediated by the microbial metabolite D-lactate. Commensal-derived D-lactate augments neutrophil adhesion in the liver independent of granulopoiesis in bone marrow or neutrophil maturation and activation in blood.

View Article and Find Full Text PDF

Despite surviving a SARS-CoV-2 infection, some individuals experience an intense post-infectious Multisystem Inflammatory Syndrome (MIS) of uncertain etiology. Children with this syndrome (MIS-C) can experience a Kawasaki-like disease, but mechanisms in adults (MIS-A) are not clearly defined. Here we utilize a deep phenotyping approach to examine immunologic responses in an individual with MIS-A.

View Article and Find Full Text PDF

Invasive fungal infections are an increasing threat to human health. Of recent concern is the emergence of influenza- or SARS-CoV-2-virus-associated invasive fungal infections. Understanding acquired susceptibilities to fungi requires consideration of the collective and newly explored roles of adaptive, innate, and natural immunity.

View Article and Find Full Text PDF

Resident-tissue macrophages (RTMs) arise from embryonic precursors, yet the developmental signals that shape their longevity remain largely unknown. Here we demonstrate in mice genetically deficient in 12-lipoxygenase and 15-lipoxygenase (Alox15 mice) that neonatal neutrophil-derived 12-HETE is required for self-renewal and maintenance of alveolar macrophages (AMs) during lung development. Although the seeding and differentiation of AM progenitors remained intact, the absence of 12-HETE led to a significant reduction in AMs in adult lungs and enhanced senescence owing to increased prostaglandin E production.

View Article and Find Full Text PDF

Real-time in vivo imaging has become an integral tool for the investigation and understanding of cellular processes in health and disease at single-cell resolution. This includes the dynamic and complex cellular interactions that occur during cancer progression and the subsequent metastatic dissemination of tumor cells to sites distant from the primary tumor. Herein we outline the methodology for the establishment and intravital imaging of the pulmonary metastatic niche, a preferred site of metastasis for many cancers, and describe the implementation of a lung window to visualize and dissect the intricate behaviour of multiple cell types within this environment.

View Article and Find Full Text PDF

The lung naturally resists () in healthy individuals, but multiple conditions can disrupt this resistance, leading to lethal invasive infections. Core processes of natural resistance and its breakdown are undefined. We investigated three distinct conditions predisposing to lethal aspergillosis-severe SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection, influenza A viral pneumonia, and systemic corticosteroid use-in human patients and murine models.

View Article and Find Full Text PDF

Thrombocytopenia is common in severe sepsis and is associated with an increased risk of mortality. A new study shows that platelet pyroptosis initiated during infection promotes a feedforward loop of neutrophil-mediated inflammation that worsens outcomes during sepsis.

View Article and Find Full Text PDF

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is a life-threatening syndrome, constituted by respiratory failure and diffuse alveolar damage that results from dysregulated local and systemic immune activation, causing pulmonary vascular, parenchymal, and alveolar damage. SARS-CoV-2 infection has become the dominant cause of ARDS worldwide, and emerging evidence implicates neutrophils and their cytotoxic arsenal of effector functions as central drivers of immune-mediated lung injury in COVID-19 ARDS. However, key outstanding questions are whether COVID-19 drives a unique program of neutrophil activation or effector functions that contribute to the severe pathogenesis of this pandemic illness and whether this unique neutrophil response can be targeted to attenuate disease.

View Article and Find Full Text PDF

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive.

View Article and Find Full Text PDF

Pulmonary innate immunity is required for host defense; however, excessive neutrophil inflammation can cause life-threatening acute lung injury. B lymphocytes can be regulatory, yet little is known about peripheral transitional IgM+ B cells in terms of regulatory properties. Using single-cell RNA sequencing, we discovered eight IgM+ B cell subsets with unique gene regulatory networks in the lung circulation dominated by transitional type 1 B and type 2 B (T2B) cells.

View Article and Find Full Text PDF

Human rhinoviruses (HRV) are common cold viruses associated with exacerbations of lower airways diseases. Although viral induced epithelial damage mediates inflammation, the molecular mechanisms responsible for airway epithelial damage and dysfunction remain undefined. Using experimental HRV infection studies in highly differentiated human bronchial epithelial cells grown at air-liquid interface (ALI), we examine the links between viral host defense, cellular metabolism, and epithelial barrier function.

View Article and Find Full Text PDF

In this study, we aimed to identify acute respiratory distress syndrome (ARDS) metabolic fingerprints in selected patient cohorts and compare the metabolic profiles of direct versus indirect ARDS and hypoinflammatory versus hyperinflammatory ARDS. We hypothesized that the biological and inflammatory processes in ARDS would manifest as unique metabolomic fingerprints that set ARDS apart from other intensive care unit (ICU) conditions and could help examine ARDS subphenotypes and clinical subgroups. Patients with ARDS ( = 108) and ICU ventilated controls ( = 27) were included.

View Article and Find Full Text PDF

Many bacteria use the second messenger cyclic diguanylate (c-di-GMP) to control motility, biofilm production and virulence. Here, we identify a thermosensory diguanylate cyclase (TdcA) that modulates temperature-dependent motility, biofilm development and virulence in the opportunistic pathogen Pseudomonas aeruginosa. TdcA synthesizes c-di-GMP with catalytic rates that increase more than a hundred-fold over a ten-degree Celsius change.

View Article and Find Full Text PDF
Article Synopsis
  • Aspergillus fumigatus is a harmful mold that primarily affects immunocompromised patients, leading to serious health issues and high mortality rates.
  • Galectin-3, a protein involved in immune response, is shown to be significantly increased in patients with pulmonary aspergillosis but doesn't directly kill the fungus.
  • Research indicates that galectin-3 aids in recruiting neutrophils to fight the infection, suggesting it plays a crucial role in the body's defense against A. fumigatus.
View Article and Find Full Text PDF

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs.

View Article and Find Full Text PDF

STING-associated vasculopathy with onset in infancy (SAVI) is an autoinflammatory disorder characterized by blood vessel occlusions, acral necrosis, myositis, rashes, and pulmonary inflammation that are the result of activating mutations in the STimulator of Interferon Genes (STING). We generated a transgenic line that recapitulates many of the phenotypic aspects of SAVI by targeting the expression of the human STING-N154S-mutant protein to the murine hematopoietic compartment. mice demonstrated failure to gain weight, lymphopenia, progressive paw swelling accompanied by inflammatory infiltrates, severe myositis, and ear and tail necrosis.

View Article and Find Full Text PDF

On November 14, 2016, the Leaders in Medicine (LIM) program at the Cumming School of Medicine, University of Calgary hosted its 8th Annual Research Symposium. Professor Stephen Sawcer, Professor of Neurological Genetics at the University of Cambridge and an Honorary Consultant Neurologist at Addenbrooke's Hospital, was the keynote speaker and presented a lecture entitled, "Multiple sclerosis genetics - prospects and pitfalls". This was not only a cutting edge address on genetics but also a thoughtful overview on Dr.

View Article and Find Full Text PDF

The health of Canadians depends on effective leadership among health care providers to facilitate the translation of new health discoveries into clinical practice. Clinician-scientists play an important role in bridging the gap between research and clinical practice, and require effective leadership skills to advance clinical practice successfully. To accelerate the leadership development in clinician scientist trainees, with the aim of developing strong leaders in administration and health advocacy, the Leaders in Medicine (LIM) training program at the University of Calgary created an Executive Leadership Coaching Program involving three phases: 1) an evidence-based evaluation tool, the Core Values IndexTM (CVI), that was used to identify the key drivers behind how individuals can be most effective in making their contribution; 2) small group workshops to debrief the results of the CVI assessment; and 3) one-on-one executive coaching sessions to facilitate the discovery, development and deployment of individual leadership capabilities.

View Article and Find Full Text PDF