Publications by authors named "Bryan W Scotney"

With increasing numbers of people living with dementia, there is growing interest in the automatic monitoring of agitation. Current assessments rely on carer observations within a framework of behavioural scales. Automatic monitoring of agitation can supplement existing assessments, providing carers and clinicians with a greater understanding of the causes and extent of agitation.

View Article and Find Full Text PDF

The work described in this paper builds upon our previous research on adoption modelling and aims to identify the best subset of features that could offer a better understanding of technology adoption. The current work is based on the analysis and fusion of two datasets that provide detailed information on background, psychosocial, and medical history of the subjects. In the process of modelling adoption, feature selection is carried out followed by empirical analysis to identify the best classification models.

View Article and Find Full Text PDF

In this work, we develop the Single-Input Multi-Output U-Net (SIMOU-Net), a hybrid network for foetal brain segmentation inspired by the original U-Net fused with the holistically nested edge detection (HED) network. The SIMOU-Net is similar to the original U-Net but it has a deeper architecture and takes account of the features extracted from each side output. It acts similar to an ensemble neural network, however, instead of averaging the outputs from several independently trained models, which is computationally expensive, our approach combines outputs from a single network to reduce the variance of predications and generalization errors.

View Article and Find Full Text PDF

We investigate various channel encoding techniques applied to breast density classification in mammograms; specifically, local binary, ternary, and quinary encoding approaches are considered. Subsequently, we propose a new encoding approach based on a seven-encoding technique, yielding a new local pattern operator called a local septenary pattern operator. Experimental results suggest that the proposed local pattern operator is robust and outperforms the other encoding techniques when evaluated on the Mammographic Image Analysis Society (MIAS) and InBreast datasets.

View Article and Find Full Text PDF

This paper presents a method for automatic breast pectoral muscle segmentation in mediolateral oblique mammograms using a Convolutional Neural Network (CNN) inspired by the Holistically-nested Edge Detection (HED) network. Most of the existing methods in the literature are based on hand-crafted models such as straight-line, curve-based techniques or a combination of both. Unfortunately, such models are insufficient when dealing with complex shape variations of the pectoral muscle boundary and when the boundary is unclear due to overlapping breast tissue.

View Article and Find Full Text PDF

In medical computer aided diagnosis systems, image segmentation is one of the major pre-processing steps used to ensure only the region of interest, such as the breast region, will be processed in subsequent steps. Nevertheless, breast segmentation is a difficult task due to low contrast and inhomogeneity, especially when estimating the chest wall in magnetic resonance (MR) images. In fact, the chest wall comprises fat, skin, muscles, and the thoracic skeleton, which can misguide automatic methods when attempting to estimate its location.

View Article and Find Full Text PDF

Breast and pectoral muscle segmentation is an essential pre-processing step for the subsequent processes in computer aided diagnosis (CAD) systems. Estimating the breast and pectoral boundaries is a difficult task especially in mammograms due to artifacts, homogeneity between the pectoral and breast regions, and low contrast along the skin-air boundary. In this paper, a breast boundary and pectoral muscle segmentation method in mammograms is proposed.

View Article and Find Full Text PDF
Article Synopsis
  • A variety of assistive technologies aim to help elderly individuals maintain independence, but their effectiveness relies heavily on users adopting these solutions.
  • This research expands on previous studies by exploring different computational methods and identifying key features that assist medical professionals in making recommendations about the technologies.
  • The adoption models were rigorously tested for prediction accuracy, robustness, and bias, achieving a remarkable 99.42% accuracy in distinguishing between technology adopters and non-adopters after addressing data imbalance issues.
View Article and Find Full Text PDF

Purpose: Assistive technologies have been identified as a potential solution for the provision of elderly care. Such technologies have in general the capacity to enhance the quality of life and increase the level of independence among their users. Nevertheless, the acceptance of these technologies is crucial to their success.

View Article and Find Full Text PDF

In recent years, the processing of hexagonal pixel-based images has been investigated, and as a result, a number of edge detection algorithms for direct application to such image structures have been developed. We build on this paper by presenting a novel and efficient approach to the design of hexagonal image processing operators using linear basis and test functions within the finite element framework. Development of these scalable first order and Laplacian operators using this approach presents a framework both for obtaining large-scale neighborhood operators in an efficient manner and for obtaining edge maps at different scales by efficient reuse of the seven-point linear operator.

View Article and Find Full Text PDF

Assistive technology has the potential to enhance the level of independence of people with dementia, thereby increasing the possibility of supporting home-based care. In general, people with dementia are reluctant to change; therefore, it is important that suitable assistive technologies are selected for them. Consequently, the development of predictive models that are able to determine a person's potential to adopt a particular technology is desirable.

View Article and Find Full Text PDF

Walking is often cited as the best form of activity for persons over the age of 60. In this paper we outline the development and evaluation of a smart garment system that aims to monitor the wearer's wellbeing and activity regimes during walking activities. Functional requirements were ascertained using a combination of questionnaires and two workshops with a target cohort.

View Article and Find Full Text PDF

Learning behavioral patterns for activities of daily living in a smart home environment can be challenged by the limited number of training data that may be available. This may be due to the infrequent repetition of routine activities (e.g.

View Article and Find Full Text PDF

In the development of technology for people with mild dementia it is essential to achieve a combination of the features which provide both support and monitoring along with the ability to offer a level of personalization. Reminding support by means of personalized video reminders portraying a relative or friend combined with sensors to assess whether the requested task was performed lends itself as an ideal combination to achieve this aim. This study assesses the potential of using low cost, off the shelf sensors combined with a mobile phone-based video reminding system to assess compliance with task completion.

View Article and Find Full Text PDF

Background: The iris as a unique identifier is predicated on the assumption that the iris image does not alter. This does not consider the fact that the iris changes in response to certain external factors including medication, disease, surgery as well as longer term ageing changes. It is also part of a dynamic optical system that alters with light level and focussing distance.

View Article and Find Full Text PDF

Feature extraction in image data has been investigated for many years, and more recently the problem of processing images containing irregularly distributed data has become prominent. Range data are now commonly used in the areas of image processing and computer vision. However, due to the data irregularity found in range images that occurs with a variety of image sensors, direct image processing, in particular edge detection, is a non-trivial problem.

View Article and Find Full Text PDF