Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps.
View Article and Find Full Text PDFWe find evidence for the formation and relaxation of large exciton polarons in 2D organic-inorganic hybrid perovskites. Using ps-scale time-resolved photoluminescence within the phenethylammonium lead iodide family of compounds, we identify a red shifting of emission that we associate with exciton polaron formation time scales of 3-10 ps. Atomic substitutions of the phenethylammonium cation allow local control over the structure of the inorganic lattice, and we show that the structural differences among materials strongly influence the exciton polaron relaxation process, revealing a polaron binding energy that grows larger (up to 15 meV) in more strongly distorted compounds.
View Article and Find Full Text PDF