Patients supported by mechanical ventilation require frequent invasive blood gas samples to monitor and adjust the level of support. We developed a transparent and novel blood gas estimation model to provide continuous monitoring of blood pH and arterial CO in between gaps of blood draws, using only readily available noninvasive data sources in ventilated patients. The model was trained on a derivation dataset (1,883 patients, 12,344 samples) from a tertiary pediatric intensive care center, and tested on a validation dataset (286 patients, 4030 samples) from the same center obtained at a later time.
View Article and Find Full Text PDFMultivariate decoding models are increasingly being applied to functional magnetic imaging (fMRI) data to interpret the distributed neural activity in the human brain. These models are typically formulated to optimize an objective function that maximizes decoding accuracy. For decoding models trained on full-brain data, this can result in multiple models that yield the same classification accuracy, though some may be more reproducible than others--i.
View Article and Find Full Text PDFInter-subject alignment of functional MRI (fMRI) data is necessary for group analyses. The standard approach to this problem matches anatomical features of the brain, such as major anatomical landmarks or cortical curvature. Precise alignment of functional cortical topographies, however, cannot be derived using only anatomical features.
View Article and Find Full Text PDFWe present a high-dimensional model of the representational space in human ventral temporal (VT) cortex in which dimensions are response-tuning functions that are common across individuals and patterns of response are modeled as weighted sums of basis patterns associated with these response tunings. We map response-pattern vectors, measured with fMRI, from individual subjects' voxel spaces into this common model space using a new method, "hyperalignment." Hyperalignment parameters based on responses during one experiment--movie viewing--identified 35 common response-tuning functions that captured fine-grained distinctions among a wide range of stimuli in the movie and in two category perception experiments.
View Article and Find Full Text PDFAdv Neural Inf Process Syst
January 2009
The inter-subject alignment of functional MRI (fMRI) data is important for improving the statistical power of fMRI group analyses. In contrast to existing anatomically-based methods, we propose a novel multi-subject algorithm that derives a functional correspondence by aligning spatial patterns of functional connectivity across a set of subjects. We test our method on fMRI data collected during a movie viewing experiment.
View Article and Find Full Text PDF