ACS Appl Bio Mater
November 2021
This study demonstrates the ability of , a medically significant human fungal pathogen, to minimize contact with an antifungal surface coating that on a flat surface is lethal on contact by growing on and between micron-sized surface topographical features, thus minimizing the contact area. Scanning electron microscopy showed that cells contacting the "floor" between microcones were killed, whereas cells attached to microcones survived and formed hyphal filaments. These spanned space between cones and avoided contact with the flat surface in-between cones.
View Article and Find Full Text PDFUnlabelled: Candida auris is known to survive for weeks on solid material surfaces. Its longevity contributes to medical device contamination and spread through healthcare facilities. We fabricated antifungal surface coatings by coating plastic and glass surfaces with a thin polymer layer to which the antifungal drug caspofungin was covalently conjugated.
View Article and Find Full Text PDFThere are many reports of antimicrobial coatings bearing immobilized active agents on surfaces; however, strong analytical evidence is required to verify that the agents are indeed covalently attached to the surface. In the absence of such evidence, antimicrobial activity could result from a release of active agents. We report a detailed assessment of antifungal surface coatings prepared using covalent attachment chemistries, with the aim of establishing a set of instrumental and biological evidence required to convincingly demonstrate antimicrobial activity due to nonreleasing, surface active compounds and to exclude the alternate possibility of activity due to release.
View Article and Find Full Text PDFFungal hyphal growth and branching are essential traits that allow fungi to spread and proliferate in many environments. This sustained growth is essential for a myriad of applications in health, agriculture, and industry. However, comparisons between different fungi are difficult in the absence of standardized metrics.
View Article and Find Full Text PDFA drug-eluting coating applied onto biomedical devices and implants is an appropriate way to ensure that an inhibitory concentration of antimicrobial drugs is present at the device surface, thus preventing surface colonization and subsequent biofilm formation. In this study, a thin polymer coating was applied to materials, and it acted as a drug-delivery reservoir capable of surface delivery of the antifungal drug fluconazole to amounts up to 21 μg/cm. The release kinetics into aqueous solution were quantified by UV spectroscopy and conformed to the Ritger-Peppas and Korsmeyer-Peppas model.
View Article and Find Full Text PDFDeposition chemistry from plasma is highly dependent on both the chemistry of the ions arriving at surfaces and the ion energy. Typically, when measuring the energy distribution of ions arriving at surfaces from plasma, it is assumed that the distributions are the same for all ionic species. Using ethyl acetate as a representative organic precursor molecule, we have measured the ion chemistry and ion energy as a function of pressure and power.
View Article and Find Full Text PDFPlant metabolites that have shown activity against bacteria and/or environmental fungi represent valuable leads for the identification and development of novel drugs against clinically important human pathogenic fungi. Plants from the genus were highly valued in traditional Australian Aboriginal medicinal practices, and was the most prized among them. As antibacterial activity of extracts from has been documented, this study addresses the question whether there is also activity against infectious fungal human pathogens.
View Article and Find Full Text PDFAntimicrob Agents Chemother
March 2019
infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals.
View Article and Find Full Text PDFAntimicrobial surface coatings that act through a contact-killing mechanism (not diffusive release) could offer many advantages to the design of medical device coatings that prevent microbial colonization and infections. However, as the authors show here, to prevent arriving at an incorrect conclusion about their mechanism of action, it is essential to employ thorough washing protocols validated by surface analytical data. Antimicrobial surface coatings were fabricated by covalently attaching polyene antifungal drugs to surface coatings.
View Article and Find Full Text PDFObjectives: Fungal biofilms caused by Candida spp. are a major contributor to infections originating from infected biomaterial implants. Since echinocandin-class molecules interfere with the integrity of the fungal cell wall, it was hypothesized that surface-immobilized anidulafungin and micafungin could play a role in preventing fungal adhesion and biofilm formation on surfaces.
View Article and Find Full Text PDFHistorically, there have been two opposing views regarding deposition mechanisms in plasma polymerisation, radical growth and direct ion deposition, with neither being able to fully explain the chemistry of the resultant coating. Deposition rate and film chemistry are dependent on the chemistry of the plasma phase and thus the activation mechanisms of species in the plasma are critical to understanding the relative contributions of various chemical and physical routes to plasma polymer formation. In this study, we investigate the roles that hydrogen plays in activating and deactivating reactive plasma species.
View Article and Find Full Text PDFIn recent years, increasing evidence has been collated on the contributions of fungal species, particularly Candida, to medical device infections. Fungal species can form biofilms by themselves or by participating in polymicrobial biofilms with bacteria. Thus, there is a clear need for effective preventative measures, such as thin coatings that can be applied onto medical devices to stop the attachment, proliferation, and formation of device-associated biofilms.
View Article and Find Full Text PDFThere is a need for coatings for biomedical devices and implants that can prevent the attachment of fungal pathogens while allowing human cells and tissue to appose without cytotoxicity. Here, the authors study whether a poly(2-hydroxyethylmethacrylate) (PHEMA) coating can suppress attachment and biofilm formation by Candida albicans and whether caspofungin terminally attached to surface-tethered polymeric linkers can provide additional benefits. The multistep coating scheme first involved the plasma polymerization of ethanol, followed by the attachment of α-bromoisobutyryl bromide (BiBB) onto surface hydroxyl groups of the plasma polymer layer.
View Article and Find Full Text PDFChemically functionalized surfaces may be produced via plasma polymerization, however a high degree of functional group retention is often difficult to achieve. Here, the plasma polymerization of three structurally related ester precursors, ethyl isobutyrate (EIB), methyl isobutyrate (MIB) and ethyl trimethylacetate (ETMA) is compared at low and high pressure. In moving from a low pressure to higher pressure regime, significant changes in the plasma chemistry and resulting plasma polymer deposit were observed with much higher retention of chemical functionality at the higher pressure observed.
View Article and Find Full Text PDFWe report a systematic study of the plasma polymerization of ethyl α-bromoisobutyrate (EBIB) to produce thin film coatings capable of serving as ATRP initiation surfaces, for which they must contain α-bromoisobutyryl functional groups. In the deposition of polymeric coatings by plasma polymerization there generally occurs considerable fragmentation of precursor ("monomer") molecules in the plasma; and the retention of larger structural elements is challenging, particularly when they are inherently chemically labile. Empirical principles such as low plasma power and low pressure are usually utilized.
View Article and Find Full Text PDFControlling the release kinetics from a drug carrier is crucial to maintain a drug's therapeutic window. We report the use of biodegradable porous silicon microparticles (pSi MPs) loaded with the anticancer drug camphothecin, followed by a plasma polymer overcoating using a loudspeaker plasma reactor. Homogenous "Teflon-like" coatings were achieved by tumbling the particles by playing AC/DC's song "Thunderstruck".
View Article and Find Full Text PDFBiointerphases
December 2015
In the development of bioactive coatings on biomaterials, it is essential to characterize the successful fabrication and the uniformity of intended coatings by sensitive surface analytical techniques, so as to ensure reliable interpretation of observed biointerfacial responses. This can, however, be challenging when small bioactive molecules are grafted onto biomaterials surfaces at sub- and near-monolayer densities. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) provides the required sensitivity, but ion signals from small grafted molecules may still be dominated by fragment ions from the underlying polymer.
View Article and Find Full Text PDFWhile plasma polymerization is used extensively to fabricate functionalized surfaces, the processes leading to plasma polymer growth are not yet completely understood. Thus, reproducing processes in different reactors has remained problematic, which hinders industrial uptake and research progress. Here we examine the crucial role pressure plays in the physical and chemical processes in the plasma phase, in interactions at surfaces in contact with the plasma phase, and how this affects the chemistry of the resulting plasma polymer films using ethanol as the gas precursor.
View Article and Find Full Text PDFNot only bacteria but also fungal pathogens, particularly Candida species, can lead to biofilm infections on biomedical devices. By covalent grafting of the antifungal drug caspofungin, which targets the fungal cell wall, onto solid biomaterials, a surface layer can be created that might be able to provide long-term protection against fungal biofilm formation. Plasma polymerization of propionaldehyde (propanal) was used to deposit a thin (∼20 nm) interfacial bonding layer bearing aldehyde surface groups that can react with amine groups of caspofungin to form covalent interfacial bonds for immobilization.
View Article and Find Full Text PDFWe report a stable plasma polymer coating, using isopentyl nitrite as a volatile precursor, which releases nitric oxide at bacteriostatic concentrations when contacted with water, inhibiting bacterial growth without cytotoxic side effects to human mesenchymal stem/stromal cells.
View Article and Find Full Text PDFA new method for generating a surface density gradient of polymer chains is presented. A substrate-independent polymer deposition technique was used to coat materials with a chemical gradient based on plasma copolymerization of 1,7-octadiene and allylamine. This provided a uniform chemical gradient to which initiators for atom transfer radical polymerization (ATRP) were immobilized.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2014
A method is described that allows potentially any surface to be functionalized covalently with atom transfer radical polymerization (ATRP) initiators derived from ethyl-2-bromoisobutyrl bromide in a single step. In addition, the initiator surface density was variable and tunable such that the thickness of polymer chain grafted from the surface varied greatly on the surfaces providing examples, across the surface of a substrate, of increased chain stretching due to the entropic nature of crowded polymer chains leading toward polymer brushes. An initiator gradient of increasing surface density was deposited by plasma copolymerization of an ATRP initiator (ethyl 2-bromoisobutyrate) and a non-ATRP reactive diluent molecule (ethanol).
View Article and Find Full Text PDF