Touch sensation hinges on force transfer across the skin and activation of mechanosensitive ion channels along the somatosensory neurons that invade the skin. This skin-nerve sensory system demands a quantitative model that spans the application of mechanical loads to channel activation. Unlike prior models of the dynamic responses of touch receptor neurons in (Eastwood et al.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2015
Interactions with the physical world are deeply rooted in our sense of touch and depend on ensembles of somatosensory neurons that invade and innervate the skin. Somatosensory neurons convert the mechanical energy delivered in each touch into excitatory membrane currents carried by mechanoelectrical transduction (MeT) channels. Pacinian corpuscles in mammals and touch receptor neurons (TRNs) in Caenorhabditis elegans nematodes are embedded in distinctive specialized accessory structures, have low thresholds for activation, and adapt rapidly to the application and removal of mechanical loads.
View Article and Find Full Text PDFTouch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood.
View Article and Find Full Text PDFThe heart is a complex integrated system that leverages mechanoelectrical signals to synchronize cardiomyocyte contraction and push blood throughout the body. The correct magnitude, timing, and distribution of these signals is critical for proper functioning of the heart; aberrant signals can lead to acute incidents, long-term pathologies, and even death. Due to the heart's limited regenerative capacity and the wide variety of pathologies, heart disease is often studied in vitro.
View Article and Find Full Text PDFWe present a microelectromechanical device-based tool, namely, a force-clamp system that sets or "clamps" the scaled force and can apply designed loading profiles (e.g., constant, sinusoidal) of a desired magnitude.
View Article and Find Full Text PDFBody mechanics in the nematode Caenorhabditis elegans are central to both mechanosensation and locomotion. Previous work revealed that the mechanics of the outer shell, rather than internal hydrostatic pressure, dominates stiffness. This shell is comprised of the cuticle and the body wall muscles, either of which could contribute to the body mechanics.
View Article and Find Full Text PDFJ Micromech Microeng
January 2010
Piezoelectric materials are widely used for microscale sensors and actuators but can pose material compatibility challenges. This paper reports a post-CMOS compatible fabrication process for piezoelectric sensors and actuators on silicon using only standard CMOS metals. The piezoelectric properties of aluminum nitride (AlN) deposited on titanium (Ti) by reactive sputtering are characterized and microcantilever actuators are demonstrated.
View Article and Find Full Text PDFThe generation and sensation of mechanical force plays a role in many dynamic biological processes, including touch sensation. This paper presents a two-axis micro strain gauge force sensor constructed from multiple layers of SU-8 and metal on quartz substrates. The sensor was designed to meet requirements for measuring tactile sensitivity and interaction forces exerted during locomotion by small organisms such as the nematode Caenorhabditis elegans.
View Article and Find Full Text PDF