Publications by authors named "Bryan P Morgan"

Complement is dysregulated in the brain in Alzheimer's Disease and in mouse models of Alzheimer's disease. Each of the complement derived effectors, opsonins, anaphylatoxins and membrane attack complex (MAC), have been implicated as drivers of disease but their relative contributions remain unclarified. Here we have focussed on the MAC, a lytic and pro-inflammatory effector, in the App mouse amyloidopathy model.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) has been associated with immune dysregulation in biomarker and genome-wide association studies (GWAS). GWAS hits include the genes encoding complement regulators clusterin (CLU) and complement receptor 1 (CR1), recognised as key players in AD pathology, and complement proteins have been proposed as biomarkers.

Main Body: To address whether changes in plasma complement protein levels in AD relate to AD-associated complement gene variants we first measured relevant plasma complement proteins (clusterin, C1q, C1s, CR1, factor H) in a large cohort comprising early onset AD (EOAD; n = 912), late onset AD (LOAD; n = 492) and control (n = 504) donors.

View Article and Find Full Text PDF

Dendritic spines are the postsynaptic sites for most excitatory glutamatergic synapses. We previously demonstrated a severe spine loss and synaptic reorganization in human neocortices presenting Type II focal cortical dysplasia (FCD), a developmental malformation and frequent cause of drug-resistant focal epilepsy. We extend the findings, investigating the potential role of complement components C1q and C3 in synaptic pruning imbalance.

View Article and Find Full Text PDF

Plasma biomarkers for Alzheimer's disease-related pathologies have undergone rapid developments during the past few years, and there are now well-validated blood tests for amyloid and tau pathology, as well as neurodegeneration and astrocytic activation. To define Alzheimer's disease with biomarkers rather than clinical assessment, we assessed prediction of research-diagnosed disease status using these biomarkers and tested genetic variants associated with the biomarkers that may reflect more accurately the risk of biochemically defined Alzheimer's disease instead of the risk of dementia. In a cohort of Alzheimer's disease cases [n = 1439, mean age 68 years (standard deviation = 8.

View Article and Find Full Text PDF

The implication of complement in multiple diseases over the last 20 years has fuelled interest in developing anti-complement drugs. To date, the focus has been on C5; blocking cleavage of C5 prevents formation of two pro-inflammatory activities, C5a anaphylatoxin and membrane attack complex. The concept of C5 blockade to inhibit inflammation dates back 30 years to the description of BB5.

View Article and Find Full Text PDF

C4d deposition in peritubular capillaries (PTC) reflects complement activation in antibody-mediated rejection (ABMR) of kidney allograft. However, its association with allograft survival is controversial. We hypothesized that capillary deposition of C5b9-indicative of complement-mediated injury-is a severity marker of ABMR.

View Article and Find Full Text PDF

The complement system plays critical roles in development, homeostasis, and regeneration in the central nervous system (CNS) throughout life; however, complement dysregulation in the CNS can lead to damage and disease. Complement proteins, regulators, and receptors are widely expressed throughout the CNS and, in many cases, are upregulated in disease. Genetic and epidemiological studies, cerebrospinal fluid (CSF) and plasma biomarker measurements and pathological analysis of post-mortem tissues have all implicated complement in multiple CNS diseases including multiple sclerosis (MS), neuromyelitis optica (NMO), neurotrauma, stroke, amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD).

View Article and Find Full Text PDF

Microglia and non-professional immune cells (endothelial cells, neurons) participate in the recognition and removal of pathogens and tissue debris in the injured central nervous system through major pro-inflammatory processes. However, the mechanisms involved in regulating these responses remain ill-characterized. We herein show that CD93, also known as complement C1qRp/AA4 stem cell marker, has an important role in the regulation of inflammatory processes.

View Article and Find Full Text PDF

The complement pathway has potential contributions to both white (WM) and grey matter (GM) pathology in Multiple Sclerosis (MS). A quantitative assessment of complement involvement is lacking. Here we describe the use of Tissue MicroArray (TMA) methodology in conjunction with immunohistochemistry to investigate the localization of complement pathway proteins in progressive MS cortical GM and subcortical WM.

View Article and Find Full Text PDF

Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes.

View Article and Find Full Text PDF

There is a critical unmet need for reliable markers of disease and disease course in mild cognitive impairment (MCI) and early Alzheimer's disease (AD). The growing appreciation of the importance of inflammation in early AD has focused attention on inflammatory biomarkers in cerebrospinal fluid or plasma; however, non-specific inflammation markers have disappointed to date. We have adopted a targeted approach, centered on an inflammatory pathway already implicated in the disease.

View Article and Find Full Text PDF

The innate immune system is an ancient surveillance system able to sense microbial invaders as well as aberrations in normal cell function. No longer viewed as a static and non-specific part of immunity, the innate immune system employs a plethora of specialized pattern recognition sensors to monitor and achieve homeostasis; these include the Toll-like receptors, the retinoic acid-inducible gene-like receptors, the nucleotide-binding oligomerization domain receptors (NLRs), the C-type lectins and the complement system. In order to increase specificity and diversity, innate immunity uses homotypic and heterotypic associations among these different components.

View Article and Find Full Text PDF

The complement system is a major component of innate immunity and a potent driver of inflammation. It has key roles in host defense against pathogens but can also contribute to pathology by driving inflammation and cell damage in diverse diseases. Complement has emerged as an important factor in the pathogenesis of numerous diseases of the CNS and PNS, including infectious, autoimmune and degenerative disorders, and is increasingly implicated in neuropsychiatric disease.

View Article and Find Full Text PDF

Atypical hemolytic uremic syndrome (aHUS) is associated with complement alternative pathway defects in over half the cases. Point mutations that affect complement surface regulation are common in factor H (CFH); however, sometimes individuals have null mutations in heterozygosis. The latter are difficult to identify, although a consistently low plasma factor H (fH) concentration is suggestive; definitive proof requires demonstration that the mutant sequence is not expressed in vitro.

View Article and Find Full Text PDF

Multiple sclerosis has a variable phenotypic presentation and subsequent disease course that, although unpredictable at disease onset, is of crucial importance in guiding interventions. Effective and accessible biomarkers are required in order to stratify patients and inform treatment. We examined whether the complement regulator factor H and its Tyr402His polymorphism, recently implicated as biomarkers in other chronic inflammatory central nervous system conditions, might identify or predict specific pathological processes and outcomes in multiple sclerosis.

View Article and Find Full Text PDF

Complement (C) activation is a crucial event in peripheral nerve degeneration but its effect on the subsequent regeneration is unknown. Here we show that genetic deficiency of the sixth C component, C6, accelerates axonal regeneration and recovery in a rat model of sciatic nerve injury. Foot-flick test and Sciatic Function Index monitored up to 5 weeks post-injury showed a significant improvement of sensory and motor function in the C6 deficient animals compared to wildtypes.

View Article and Find Full Text PDF

The complement system is implicated in Wallerian degeneration (WD). We have previously shown that the membrane attack complex (MAC), the terminal activation product of the complement cascade, mediates rapid axonal degradation and myelin clearance during WD after peripheral nerve injury. In this study we analyzed the contribution of CD59a, a cell membrane negative regulator of the MAC, to WD.

View Article and Find Full Text PDF

Anti-disialoside antibodies (Abs) that bind NeuAc(alpha2-8) NeuAc epitopes on GQ1b and related gangliosides are found in human autoimmune neuropathy sera and are considered to be pathogenic. In a model system in mice, one mechanism by which anti-disialoside Abs have been demonstrated to induce paralysis is through a complement dependent blocking effect on transmitter release at the neuromuscular junction, similar to the effects of alpha-latrotoxin. Although direct targeting of presynaptic neuronal membranes occurs in this model, concomitant injury to perisynaptic Schwann cells (pSC) could indirectly contribute to this paralytic effect by influencing nerve terminal function and survival.

View Article and Find Full Text PDF

There is a growing body of evidence implicating complement and, in particular, the terminal pathway (membrane attack complex; MAC) in inducing demyelination in multiple sclerosis and experimental allergic encephalomyelitis. In this paper, we examined the disease course and pathological changes in mice deficient in the major regulator of MAC assembly, CD59a, during the course of acute experimental allergic encephalomyelitis induced by immunisation with recombinant myelin oligodendrocyte glycoprotein. Disease incidence and severity were significantly increased in CD59a-deficient mice.

View Article and Find Full Text PDF