Previous work demonstrated the utility of using human-derived intestinal epithelial cell (IEC) lines cultured as polarized monolayers on Transwell® filters to differentiate between hazardous and non-hazardous proteins. The current study seeks to further resolve appropriate concentrations for evaluating proteins of unknown hazard potential using the IEC experimental platform and leverages these parameters for evaluating the potential toxicity of insecticidal proteins characteristic of those expressed in genetically modified (GM) agricultural biotechnology crops. To establish optimal test protein concentrations, effects of several known hazardous (C.
View Article and Find Full Text PDFHistological and lineage immunofluorescence examination revealed that healthy conducting airways of humans and animals harbor sporadic poorly differentiated epithelial patches mostly in the dorsal noncartilage regions that remarkably manifest squamous differentiation. analysis demonstrated that this squamous phenotype is not due to intrinsic functional change in underlying airway basal cells. Rather, it is a reversible physiological response to persistent Wnt signaling stimulation during differentiation.
View Article and Find Full Text PDFJ Allergy Clin Immunol
August 2023
Background: Job syndrome is a disease of autosomal dominant hyper-IgE syndrome (AD-HIES). Patients harboring STAT3 mutation are particularly prone to airway remodeling and airway infections.
Objectives: Airway epithelial cells play a central role as the first line of defense against pathogenic infection and express high levels of STAT3.
Neutrophil swarming is an emergent host defense mechanism triggered by targets larger than a single neutrophil's capacity to phagocytose. Swarming synergizes neutrophil functions, including chemotaxis, phagocytosis, and reactive oxygen species (ROS) production, and coordinates their deployment by many interacting neutrophils. The potent inflammatory lipid mediator leukotriene B (LTB) has been established as central to orchestrating neutrophil activities during swarming.
View Article and Find Full Text PDFObjective: Gastroesophageal reflux disease (GERD) and laryngopharyngeal reflux (LPR) are chronic conditions caused by backflow of gastric and duodenal contents into the esophagus and proximal aerodigestive tract, respectively. Mucosal barrier dysfunction resultant from the synergistic actions of chemical injury and the mucosal inflammatory response during reflux contributes to symptom perception. Alginates effectively treat symptoms of mild to moderate GERD and have recently shown benefit for LPR.
View Article and Find Full Text PDFBackground: Excessive neutrophil inflammation is the hallmark of cystic fibrosis (CF) airway disease. Novel technologies for characterizing neutrophil dysfunction may provide insight into the nature of these abnormalities, revealing a greater mechanistic understanding and new avenues for CF therapies that target these mechanisms.
Methods: Blood was collected from individuals with CF in the outpatient clinic, CF individuals hospitalized for a pulmonary exacerbation, and non-CF controls.
Inflammation of the airway involves the recruitment of highly active immune cells to combat and clear microbes and toxic factors; however, this inflammatory response can result in unintended damage to lung tissue. Tissue damage resulting from inflammation is often mitigated by resolving factors that limit the scope and duration of the inflammatory response. Both inflammatory and resolving processes require the actions of a vast array of lipid mediators that can be rapidly synthesized through a variety of airway resident and infiltrating immune cells.
View Article and Find Full Text PDFBackground: Individuals with cystic fibrosis (CF) have persistent lung infections, necessitating the frequent use of antibiotics for pulmonary exacerbations. Some respiratory pathogens have intrinsic resistance to the currently available antibiotics, and any pathogen may acquire resistance over time, posing a challenge to CF care. Gaseous nitric oxide has been shown to have antimicrobial activity against a wide variety of microorganisms, including common CF pathogens, and offers a potential inhaled antimicrobial therapy.
View Article and Find Full Text PDFThroughout the course of infection, many pathogens encounter bactericidal conditions that threaten the viability of the bacteria and impede the establishment of infection. Bile is one of the most innately bactericidal compounds present in humans, functioning to reduce the bacterial burden in the gastrointestinal tract while also aiding in digestion. It is becoming increasingly apparent that pathogens successfully resist the bactericidal conditions of bile, including bacteria that do not normally cause gastrointestinal infections.
View Article and Find Full Text PDFis a ubiquitous fungal pathogen capable of causing multiple pulmonary diseases, including invasive aspergillosis, chronic necrotizing aspergillosis, fungal colonization, and allergic bronchopulmonary aspergillosis. Intact mucociliary barrier function and early airway neutrophil responses are critical for clearing fungal conidia from the host airways prior to establishing disease. Following inhalation, conidia deposit in the small airways, where they are likely to make their initial host encounter with epithelial cells.
View Article and Find Full Text PDFIntestinal helminth infections elicit Th2-type immunity, which influences host immune responses to additional threats, such as allergens, metabolic disease, and other pathogens. Th2 immunity involves a shift of the CD4 T-cell population from type-0 to type-2 (Th2) with increased abundance of interleukin (IL)-4 and IL-13. This study sought to investigate if existing gut-restricted intestinal helminth infections impact bacterial-induced acute airway neutrophil recruitment.
View Article and Find Full Text PDFPepsin represents a potential biomarker for extraesophageal reflux disease when detected in airways, however a direct role for pepsin in lung dysfunction has not been clearly established. Children experiencing gastroesophageal and extraesophageal reflux are often prescribed proton pump inhibitors (PPIs) to reduce gastric acid associated damage to esophageal and airway mucosa. The potential of pepsin and gastric fluid, from children that were either on or off PPI therapy, to cause inflammation and damage using a human in vitro co-culture model of the airway mucosa was evaluated herein.
View Article and Find Full Text PDFCystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Although impairment of mucociliary clearance contributes to severe morbidity and mortality in people with CF, a clear understanding of the pathophysiology is lacking. This is, in part, due to the absence of clinical imaging techniques capable of capturing CFTR-dependent functional metrics at the cellular level.
View Article and Find Full Text PDFAirway basal stem cells are the progenitor cells within the airway that exhibit the capacity to self-renew and give rise to multiple types of differentiated airway epithelial cells. This stem cell-derived epithelium displays organized architecture with functional attributes of the airway mucosa. A protocol has been developed to culture and expand human airway basal stem cells while preserving their stem cell properties and capacity for subsequent mucociliary differentiation.
View Article and Find Full Text PDFPseudomonas aeruginosa is a phenotypically and genotypically diverse and adaptable Gram-negative bacterium ubiquitous in human environments. P. aeruginosa is able to form biofilms, develop antibiotic resistance, produce virulence factors, and rapidly evolve in the course of a chronic infection.
View Article and Find Full Text PDFEicosanoids are a group of bioactive lipids that are shown to be important mediators of neutrophilic inflammation; selective targeting of their function confers therapeutic benefit in a number of diseases. Neutrophilic airway diseases, including cystic fibrosis, are characterized by excessive neutrophil infiltration into the airspace. Understanding the role of eicosanoids in this process may reveal novel therapeutic targets.
View Article and Find Full Text PDFNeutrophil breach of the mucosal surface is a common pathological consequence of infection. We present an advanced co-culture model to explore neutrophil transepithelial migration utilizing airway mucosal barriers differentiated from primary human airway basal cells and examined by advanced imaging. Human airway basal cells were differentiated and cultured at air-liquid interface (ALI) on the underside of 3 µm pore-sized transwells, compatible with the study of transmigrating neutrophils.
View Article and Find Full Text PDFExcessive neutrophil infiltration of the lungs is a common contributor to immune-related pathology in many pulmonary disease states. In response to pathogenic infection, airway epithelial cells produce hepoxilin A3 (HXA3), initiating neutrophil transepithelial migration. Migrated neutrophils amplify this recruitment by producing a secondary gradient of leukotriene B4 (LTB4).
View Article and Find Full Text PDFA model of neutrophil migration across epithelia is desirable to interrogate the underlying mechanisms of neutrophilic breach of mucosal barriers. A co-culture system consisting of a polarized mucosal epithelium and human neutrophils can provide a versatile model of trans-epithelial migration in vitro, but observations are typically limited to quantification of migrated neutrophils by myeloperoxidase correlation, a destructive assay that precludes direct longitudinal study. Our laboratory has recently developed a new isotropic 1-μm resolution optical imaging technique termed micro-optical coherence tomography (μOCT) that enables 4D (x,y,z,t) visualization of neutrophils in the co-culture environment.
View Article and Find Full Text PDFAn ever-increasing number of adult and pediatric disorders have been shown to be influenced or caused by airway reflux. This has become a controversial and complicated aspect of medicine that requires a multidisciplinary approach. Evidence indicates that it is not only the acidic components of gastric refluxate that injure extraesophageal tissues but also the nonacidic components, such as pepsin and bile.
View Article and Find Full Text PDFGut commensal bacteria contribute to the pathogenesis of inflammatory bowel disease, in part by activating the inflammasome and inducing secretion of interleukin-1ß (IL-1ß). Although much has been learned about inflammasome activation by bacterial pathogens, little is known about how commensals carry out this process. Accordingly, we investigated the mechanism of inflammasome activation by representative commensal bacteria, the Gram-positive Bifidobacterium longum subspecies infantis and the Gram-negative Bacteroides fragilis.
View Article and Find Full Text PDFHuman intestinal epithelial cell lines (T84, Caco-2, and HCT-8) grown on permeable Transwell™ filters serve as models of the gastrointestinal barrier. In this study, this in vitro model system was evaluated for effectiveness at distinguishing between hazardous and non-hazardous proteins. Indicators of cytotoxicity (LDH release, MTT conversion), monolayer barrier integrity ([(3)H]-inulin flux, horseradish peroxidase flux, trans-epithelial electrical resistance [TEER]), and inflammation (IL-8, IL-6 release) were monitored following exposure to hazardous or non-hazardous proteins.
View Article and Find Full Text PDFSignificant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease.
View Article and Find Full Text PDFNeutrophilic infiltration is a leading contributor to pathology in a number of pulmonary disease states, including cystic fibrosis. Hepoxilin A3 (HXA3) is a chemotactic eicosanoid shown to mediate the transepithelial passage of neutrophils in response to infection in several model systems and at multiple mucosal surfaces. Another well-known eicosanoid mediating general neutrophil chemotaxis is leukotriene B4 (LTB4).
View Article and Find Full Text PDF