Learning motor skills requires plasticity in the primary motor cortex (M1), including changes in inhibitory circuitry. But how inhibitory synaptic connections change during skill acquisition and whether this varies over development is not fully understood. This study assesses the normal developmental trajectory of motor learning and then addresses inhibitory connectivity changes after motor learning.
View Article and Find Full Text PDFThe neocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision-making, where lateralization of function may be less important. This study contrasted the topographic precision of cell-type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes.
View Article and Find Full Text PDFThe cardinal symptoms of Parkinson's disease (PD) such as bradykinesia and akinesia are debilitating, and treatment options remain inadequate. The loss of nigrostriatal dopamine neurons in PD produces motor symptoms by shifting the balance of striatal output from the direct (go) to indirect (no-go) pathway in large part through changes in the excitatory connections and intrinsic excitabilities of the striatal projection neurons (SPNs). Here, we report using two different experimental models that a transient increase in striatal dopamine and enhanced D1 receptor activation, during 6-OHDA dopamine depletion, prevent the loss of mature spines and dendritic arbors on direct pathway projection neurons (dSPNs) and normal motor behavior for up to 5 months.
View Article and Find Full Text PDFTo meet the high energy demands of brain function, cerebral blood flow (CBF) parallels changes in neuronal activity by a mechanism known as neurovascular coupling (NVC). However, which neurons play a role in mediating NVC is not well understood. Here, we identify in mice and humans a specific population of cortical GABAergic neurons that co-express neuronal nitric oxide synthase and tachykinin receptor 1 (Tacr1).
View Article and Find Full Text PDFNeocortex and striatum are topographically organized for sensory and motor functions. While sensory and motor areas are lateralized for touch and motor control, respectively, frontal areas are involved in decision making, where lateralization of function may be less important. This study contrasted the topographic precision of cell type-specific ipsilateral and contralateral cortical projections while varying the injection site location in transgenic mice of both sexes.
View Article and Find Full Text PDFIn mammalian cortex, feedforward excitatory connections recruit feedforward inhibition. This is often carried by parvalbumin (PV+) interneurons, which may densely connect to local pyramidal (Pyr) neurons. Whether this inhibition affects all local excitatory cells indiscriminately or is targeted to specific subnetworks is unknown.
View Article and Find Full Text PDFIntracortical inhibition in motor cortex (M1) regulates movement and motor learning. If cortical and thalamic inputs target different inhibitory cell types in different layers, then these afferents may play different roles in regulating M1 output. Using mice of both sexes, we quantified input to two main classes of M1 interneurons, parvalbumin+ (PV+) cells and somatostatin+ (SOM+) cells, using monosynaptic rabies tracing.
View Article and Find Full Text PDFWhile offering high-precision control of neural circuits, optogenetics is hampered by the necessity to implant fiber-optic waveguides in order to deliver photons to genetically engineered light-gated neurons in the brain. Unlike laser light, X-rays freely pass biological barriers. Here we show that radioluminescent Gd(WO):Eu nanoparticles, which absorb external X-rays energy and then downconvert it into optical photons with wavelengths of ∼610 nm, can be used for the transcranial stimulation of cortical neurons expressing red-shifted, ∼590-630 nm, channelrhodopsin ReaChR, thereby promoting optogenetic neural control to the practical implementation of minimally invasive wireless deep brain stimulation.
View Article and Find Full Text PDFSince the discovery of ocular dominance plasticity, neuroscientists have understood that changes in visual experience during a discrete developmental time, the critical period, trigger robust changes in the visual cortex. State-of-the-art tools used to probe connectivity with cell-type-specific resolution have expanded the understanding of circuit changes underlying experience-dependent plasticity. Here, we review the visual circuitry of the mouse, describing projections from retina to thalamus, between thalamus and cortex, and within cortex.
View Article and Find Full Text PDFWithin the basal ganglia circuit, the external globus pallidus (GPe) is critically involved in motor control. Aside from Foxp2 neurons and ChAT neurons that have been established as unique neuron types, there is little consensus on the classification of GPe neurons. Properties of the remaining neuron types are poorly defined.
View Article and Find Full Text PDFUnderstanding the principles governing neuronal diversity is a fundamental goal for neuroscience. Here, we provide an anatomical and transcriptomic database of nearly 200 genetically identified cell populations. By separately analyzing the robustness and pattern of expression differences across these cell populations, we identify two gene classes contributing distinctly to neuronal diversity.
View Article and Find Full Text PDFIdentification and delineation of brain regions in histologic mouse brain sections is especially pivotal for many neurogenomics, transcriptomics, proteomics, and connectomics studies, yet this process is prone to observer error and bias. Here we present a novel brain navigation system, named NeuroInfo, whose general principle is similar to that of a global positioning system (GPS) in a car. NeuroInfo automatically navigates an investigator through the complex microscopic anatomy of histologic sections of mouse brains (thereafter: "experimental mouse brain sections").
View Article and Find Full Text PDFAdvances in molecular neuroanatomical tools have expanded the ability to map in detail connections of specific neuron subtypes in the context of behaviorally driven patterns of neuronal activity. Analysis of such data across the whole mouse brain, registered to a reference atlas, aids in understanding the functional organization of brain circuits related to behavior. A process is described to image mouse brain sections labeled with standard histochemical techniques, reconstruct those images into a whole brain image volume and register those images to the Allen Mouse Brain Common Coordinate Framework.
View Article and Find Full Text PDFIn the original version of this Article, support provided during initiation of the project was not fully acknowledged. The PDF and HTML versions of the Article have now been corrected to include support from Karel Svoboda, members of the Svoboda lab, and members of Janelia's Vivarium staff.
View Article and Find Full Text PDFCurr Protoc Neurosci
October 2018
Manipulation of defined neurons using excitatory opsins, including channelrhodopsin, enables studies of connectivity and the functional role of these circuit components in the brain. These techniques are vital in the neocortex, where diverse neurons are intermingled, and stimulation of specific cell types is difficult without the spatial, temporal, and genetic control available with optogenetic approaches. Channelrhodopsins are effective for mapping excitatory connectivity from one input type to its target.
View Article and Find Full Text PDFThe striatum shows general topographic organization and regional differences in behavioral functions. How corticostriatal topography differs across cortical areas and cell types to support these distinct functions is unclear. This study contrasted corticostriatal projections from two layer 5 cell types, intratelencephalic (IT-type) and pyramidal tract (PT-type) neurons, using viral vectors expressing fluorescent reporters in Cre-driver mice.
View Article and Find Full Text PDFMotor cortex is important for motor skill learning, particularly the dexterous skills necessary for our favorite sports and careers. We are especially interested in understanding how plasticity in motor cortex contributes to skill learning. Although human studies have been helpful in understanding the importance of motor cortex in learning skilled tasks, animal models are necessary for achieving a detailed understanding of the circuitry underlying these behaviors and the changes that occur during training.
View Article and Find Full Text PDFScientists and philosophers have long appreciated that active somatosensation requires the sensory and motor systems to exchange information about body the body's movements as well as touch in order to accurately interpret incoming somatosensory information and plan future movements. However, the circuitry underlying this sensory and motor integration is complicated and is difficult to study without tools to label specific cellular components in the various brain regions involved. Here, I review the general pathways that convey ascending sensory and descending motor information, using the rodent whisker system as a model to take advantage of the cell type specificity possible in this model.
View Article and Find Full Text PDFWe describe an engineered family of highly antigenic molecules based on GFP-like fluorescent proteins. These molecules contain numerous copies of peptide epitopes and simultaneously bind IgG antibodies at each location. These 'spaghetti monster' fluorescent proteins (smFPs) distributed well in neurons, notably into small dendrites, spines and axons.
View Article and Find Full Text PDFCortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron.
View Article and Find Full Text PDFNeurophotonics methods offer powerful ways to access neuronal signals and circuits. We highlight recent advances and current themes in this area, emphasizing tools for mapping, monitoring, and manipulating excitatory projection neurons and their synaptic circuits in mouse motor cortex.
View Article and Find Full Text PDFGABAergic terminals of chandelier cells exclusively innervate the axon initial segment (AIS) of excitatory neurons. Although the anatomy of these synapses has been well-studied in several brain areas, relatively little is known about their physiological properties. Using vesicular γ-aminobutyric acid transporter-channelrhodopsin 2-enhanced yellow fluorescence protein (VGAT-ChR2-YFP)-expressing mice and a novel fibreoptic 'laserspritzer' approach that we developed, we investigated the physiological properties of axo-axonic synapses (AASs) in brain slices from the piriform cortex (PC) of mice.
View Article and Find Full Text PDFDuring development, neurons are constantly refining their connections in response to changes in activity. Experience-dependent plasticity is a key form of synaptic plasticity, involving changes in α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) accumulation at synapses. Here, we report a critical role for the AMPAR auxiliary subunit stargazin in this plasticity.
View Article and Find Full Text PDFMouse visual cortex is subdivided into multiple distinct, hierarchically organized areas that are interconnected through feedforward (FF) and feedback (FB) pathways. The principal synaptic targets of FF and FB axons that reciprocally interconnect primary visual cortex (V1) with the higher lateromedial extrastriate area (LM) are pyramidal cells (Pyr) and parvalbumin (PV)-expressing GABAergic interneurons. Recordings in slices of mouse visual cortex have shown that layer 2/3 Pyr cells receive excitatory monosynaptic FF and FB inputs, which are opposed by disynaptic inhibition.
View Article and Find Full Text PDF