Electrostatic modes of atomic force microscopy have shown to be non-destructive and relatively simple methods for imaging conductors embedded in insulating polymers. Here we use electrostatic force microscopy to image the dispersion of carbon nanotubes in a latex-based conductive composite, which brings forth features not observed in previously studied systems employing linear polymer films. A fixed-potential model of the probe-nanotube electrostatics is presented which in principle gives access to the conductive nanoparticle's depth and radius, and the polymer film dielectric constant.
View Article and Find Full Text PDFChemical analysis of exhaled breath condensate (EBC) is an emerging method to non-invasively identify and measure potential biomarkers of disease. Various EBC collection methods have been proposed, each with strengths and weaknesses. Recent evidence in the literature suggests that sample collection methodologies could introduce potential artifacts in biomarker measurements.
View Article and Find Full Text PDF