Publications by authors named "Bryan Leong"

Article Synopsis
  • The study investigates whether Developmental Prosopagnosics (DPs) have deficits in holistic face processing, which is commonly assumed to be crucial for face recognition.
  • Mixed findings from previous research suggest that the diversity of DPs' deficits and the different ways holistic processing is measured contribute to the confusion.
  • The current research found that while DPs have reduced but not absent holistic processing effects in certain tests, individual cases reveal varied levels of these deficits, indicating a complex relationship between holistic processing and face recognition in DPs.
View Article and Find Full Text PDF

While it is generally accepted that holistic processing facilitates face recognition, recent studies suggest that poor recognition might also arise from imprecise perception of local features in the face. This study aimed to examine to what extent holistic and featural processing relates to individual differences in face recognition ability (FRA), during face learning (Experiment 1) and face recognition (Experiment 2). Participants performed two tasks: (1) The "Cambridge Face Memory Test-Chinese" which measured participants' FRAs, and (2) an "old/new recognition memory test" encompassing whole faces (preserving holistic and featural processing) and faces revealed through a dynamic aperture (impairing holistic processing but preserving featural processing).

View Article and Find Full Text PDF

The Cambridge Face Memory Test (CFMT) is one of the most important measures of individual differences in face recognition and for the diagnosis of prosopagnosia. Having two different CFMT versions using a different set of faces seems to improve the reliability of the evaluation. However, at the present time, there is only one Asian version of the test.

View Article and Find Full Text PDF

Continuous directed evolution (CDE) is a powerful tool for enzyme engineering due to the depth and scale of evolutionary search that it enables. If suitably controlled and calibrated, CDE could be widely applied in plant breeding and biotechnology to improve plant enzymes . We tested this concept by evolving arogenate dehydratase (AtADT2) for resistance to feedback inhibition.

View Article and Find Full Text PDF

Nonphotosynthetic plant metabolic processes are powered by respiratory energy, a limited resource that metabolic engineers—like plants themselves—must manage prudently.

View Article and Find Full Text PDF

Like angiosperms from several other families, the leguminous shrub Gastrolobium bilobum R.Br. produces and accumulates fluoroacetate, indicating that it performs the difficult chemistry needed to make a C-F bond.

View Article and Find Full Text PDF

Plants make a variety of specialized metabolites that can mediate interactions with animals, microbes, and competitor plants. Understanding how plants synthesize these compounds enables studies of their biological roles by manipulating their synthesis in vivo as well as producing them in vitro. Acylsugars are a group of protective metabolites that accumulate in the trichomes of many Solanaceae family plants.

View Article and Find Full Text PDF

Continuous directed evolution of enzymes and other proteins in microbial hosts is capable of outperforming classical directed evolution by executing hypermutation and selection concurrently in vivo, at scale, with minimal manual input. Provided that a target enzyme's activity can be coupled to growth of the host cells, the activity can be improved simply by selecting for growth. Like all directed evolution, the continuous version requires no prior mechanistic knowledge of the target.

View Article and Find Full Text PDF

Plant specialized metabolites mediate interactions between plants and the environment and have significant agronomical/pharmaceutical value. Most genes involved in specialized metabolism (SM) are unknown because of the large number of metabolites and the challenge in differentiating SM genes from general metabolism (GM) genes. Plant models like have extensive, experimentally derived annotations, whereas many non-model species do not.

View Article and Find Full Text PDF

Plants produce phylogenetically and spatially restricted, as well as structurally diverse specialized metabolites via multistep metabolic pathways. Hallmarks of specialized metabolic evolution include enzymatic promiscuity and recruitment of primary metabolic enzymes and examples of genomic clustering of pathway genes. Solanaceae glandular trichomes produce defensive acylsugars, with sidechains that vary in length across the family.

View Article and Find Full Text PDF

Plants make many biologically active, specialized metabolites, which vary in structure, biosynthesis, and the processes they influence. An increasing number of these compounds are documented to protect plants from insects, pathogens, or herbivores or to mediate interactions with beneficial organisms, including pollinators and nitrogen-fixing microbes. Acylsugars, one class of protective compounds, are made in glandular trichomes of plants across the Solanaceae family.

View Article and Find Full Text PDF

Plants produce a myriad of taxonomically restricted specialized metabolites. This diversity-and our ability to correlate genotype with phenotype-makes the evolution of these ecologically and medicinally important compounds interesting and experimentally tractable. Trichomes of tomato and other nightshade family plants produce structurally diverse protective compounds termed acylsugars.

View Article and Find Full Text PDF

Acylsugars are insecticidal plant specialized metabolites produced in the Solanaceae (nightshade family). Despite having simple constituents, these compounds are unusually structurally diverse. Their structural variations in phylogenetically closely related species enable comparative biochemical approaches to understand acylsugar biosynthesis and pathway diversification.

View Article and Find Full Text PDF

Plant specialized metabolism (SM) enzymes produce lineage-specific metabolites with important ecological, evolutionary, and biotechnological implications. Using as a model, we identified distinguishing characteristics of SM and GM (general metabolism, traditionally referred to as primary metabolism) genes through a detailed study of features including duplication pattern, sequence conservation, transcription, protein domain content, and gene network properties. Analysis of multiple sets of benchmark genes revealed that SM genes tend to be tandemly duplicated, coexpressed with their paralogs, narrowly expressed at lower levels, less conserved, and less well connected in gene networks relative to GM genes.

View Article and Find Full Text PDF

The diversity of life on Earth is a result of continual innovations in molecular networks influencing morphology and physiology. Plant specialized metabolism produces hundreds of thousands of compounds, offering striking examples of these innovations. To understand how this novelty is generated, we investigated the evolution of the Solanaceae family-specific, trichome-localized acylsugar biosynthetic pathway using a combination of mass spectrometry, RNA-seq, enzyme assays, RNAi and phylogenomics in different non-model species.

View Article and Find Full Text PDF

Specialized metabolic enzymes and metabolite diversity evolve through a variety of mechanisms including promiscuity, changes in substrate specificity, modifications of gene expression and gene duplication. For example, gene duplication and substrate binding site changes led to the evolution of the glucosinolate biosynthetic enzyme, AtIPMDH1, from a Leu biosynthetic enzyme. BAHD acyltransferases illustrate how enzymatic promiscuity leads to metabolite diversity.

View Article and Find Full Text PDF

Acylsugars are insecticidal specialized metabolites produced in the glandular trichomes of plants in the Solanaceae family. In the tomato clade of the Solanum genus, acylsugars consist of aliphatic acids of different chain lengths esterified to sucrose, or less frequently to glucose. Through liquid chromatography-mass spectrometry screening of introgression lines, we previously identified a region of chromosome 8 in the Solanum pennellii LA0716 genome (IL8-1/8-1-1) that causes the cultivated tomato Solanum lycopersicum to shift from producing acylsucroses with abundant 3-methylbutanoic acid acyl chains derived from leucine metabolism to 2-methylpropanoic acid acyl chains derived from valine metabolism.

View Article and Find Full Text PDF

Dolichol plays an indispensable role in the N-glycosylation of eukaryotic proteins. As proteins enter the secretory pathway they are decorated by a 'glycan', which is preassembled onto a membrane-anchored dolichol molecule embedded within the endoplasmic reticulum (ER). Genetic and biochemical evidence in yeast and animals indicate that a cis-prenyltransferase (CPT) is required for dolichol synthesis, but also point to other factor(s) that could be involved.

View Article and Find Full Text PDF

Functional gene clusters, containing two or more genes encoding different enzymes for the same pathway, are sometimes observed in plant genomes, most often when the genes specify the synthesis of specialized defensive metabolites. Here, we show that a cluster of genes in tomato (Solanum lycopersicum; Solanaceae) contains genes for terpene synthases (TPSs) that specify the synthesis of monoterpenes and diterpenes from cis-prenyl diphosphates, substrates that are synthesized by enzymes encoded by cis-prenyl transferase (CPT) genes also located within the same cluster. The monoterpene synthase genes in the cluster likely evolved from a diterpene synthase gene in the cluster by duplication and divergence.

View Article and Find Full Text PDF

Amyloids are highly aggregated proteinaceous fibers historically associated with neurodegenerative conditions including Alzheimers, Parkinsons, and prion-based encephalopathies. Polymerization of amyloidogenic proteins into ordered fibers can be accelerated by preformed amyloid aggregates derived from the same protein in a process called seeding. Seeding of disease-associated amyloids and prions is highly specific and cross-seeding is usually limited or prevented.

View Article and Find Full Text PDF

Pyridostigmine bromide (PB) has been used to protect soldiers from the toxic effects of soman, a chemical warfare agent. Recent research shows that pyridostigmine bromide protects a significant percentage of acetylcholinesterase in isolated human intercostal muscle. Findings presented here indicate that red blood cell acetylcholinesterase is similarly protected by pyridostigmine bromide from the action of diisopropyl fluorophosphate and several organophosphate pesticides including chlorpyrifos-oxon, diazinon-oxon, and paraoxon, but not malaoxon, using the bovine red blood cell as a subject.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session7b0ape4vr27e4r4p4j9bgchoba4lq5dh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once