A novel series of substituted N-[3-(1,1,2,2-tetrafluoroethoxy)benzyl]-N-(3-phenoxyphenyl)-trifluoro-3-amino-2-propanols is described which potently and reversibly inhibit cholesteryl ester transfer protein (CETP). Starting from the initial lead 1, various substituents were introduced into the 3-phenoxyaniline group to optimize the relative activity for inhibition of the CETP-mediated transfer of [3H]-cholesteryl ester from HDL donor particles to LDL acceptor particles either in buffer or in human serum. The better inhibitors in the buffer assay clustered among compounds in which the phenoxy group was substituted at the 3, 4, or 5 positions.
View Article and Find Full Text PDFA novel series of substituted N-benzyl-N-phenyl-trifluoro-3-amino-2-propanols are described that reversibly inhibit cholesteryl ester transfer protein (CETP). Starting with screening lead 22, various structural features were explored with respect to inhibition of the CETP-mediated transfer of [(3)H]cholesterol from high-density cholesterol donor particles to low-density cholesterol acceptor particles. The free hydroxyl group of the propanol was required for high potency, since acylation or alkylation reduced activity.
View Article and Find Full Text PDFHigh-throughput screening (HTS) of compound libraries is used to discover novel leads for drug development. When a structure is available for the target, computer-based screening using molecular docking may also be considered. The two techniques have rarely been used together on the same target.
View Article and Find Full Text PDF