HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV, coupled with the evolution of genetically isolated populations in the CNS, is responsible for poor prognosis in patients with AIDS, warranting further investigation and possible additions to the current therapeutic strategy.
View Article and Find Full Text PDFHuman immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among these, proteins of the CCAAT/enhancer binding protein (C/EBP) family are of particular importance in regulating HIV-1 gene expression within cells of the monocytic lineage during the course of hematologic development and cellular activation.
View Article and Find Full Text PDFPROBLEM STATEMENT: Infection with retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. APPROACH: HIV-1-induced neurologic disease is associated with an influx of HIV-infected monocytic cells across the blood-brain barrier. Following neuroinvasion, HIV-1 and viral proteins, in addition to cellular mediators released from infected and uninfected cells participate in astrocytic and neuronal dysregulation, leading to mild to severe neurocognitive disorders.
View Article and Find Full Text PDFCells of the monocyte-macrophage lineage play an important role in human immunodeficiency virus type 1 (HIV-1)-associated disease. Infected myeloid precursor cells of the bone marrow are thought to be a viral reservoir that may repopulate the peripheral blood, central nervous system (CNS), and other organ systems throughout the course of disease. To model select aspects of HIV-1 infection of the bone marrow compartment in vitro, the erythro-myeloid precursor cell line, TF-1, was used.
View Article and Find Full Text PDFHuman T cell leukemia virus type 1 (HTLV-1) has previously been shown to infect antigen-presenting cells and their precursors in vivo. However, the role these important cell populations play in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis or adult T cell leukemia remains unresolved. To better understand how HTLV-1 infection of these important cell populations may potentially impact disease progression, the regulation of HTLV-1 viral gene expression in established monocytic cell lines was examined.
View Article and Find Full Text PDFCCAAT/enhancer-binding protein (C/EBP) basic region/leucine zipper (bZIP) transcription factors have been shown to form heterodimers with cAMP-responsive element binding protein 2 (CREB-2), a transcription factor involved in regulating basal and Tax-mediated transactivation of the human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). In cells of the monocyte-macrophage lineage (proposed to play a role in HTLV-1 pathogenesis as an accessory target cell), several members of the C/EBP family are expressed at high levels and may have functional impact on both basal and Tax-mediated transactivation of the HTLV-1 LTR. Basal activation of the HTLV-1 LTR was enhanced by overexpression of C/EBPbeta, C/EBPdelta, or C/EBPepsilon, whereas transactivation of the LTR by Tax was inhibited by overexpression of C/EBPalpha and C/EBPbeta.
View Article and Find Full Text PDFBasal and activated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) activity, and in return, viral replication is partly dependent on interactions of the G/C box array with the Sp family of transcription factors. Analysis of LTR Sp binding site sequence variants revealed a C-to-T change at position 5 within Sp site III that increased in frequency and a 5T mutation within Sp site II, which decreased in frequency during the course of HIV disease. These results suggest LTR Sp binding site sequence variants may prove useful as viral molecular markers indicative of progressive HIV-1-induced disease.
View Article and Find Full Text PDFNumerous host and viral factors likely participate in the onset and progression of HIV-1-associated dementia (HIVD). Previous studies have suggested that viral gene expression in resident central nervous system (CNS) cells of monocyte/macrophage lineage play a central role in the production of neurotoxic viral proteins and infectious virus, deregulation of cellular gene expression, and/or dysfunction of glial and neuronal cell populations. HIV-1 replication is regulated, in part, by interactions between cellular transcription factors and the viral trans-activators, Tat and viral protein R (Vpr), with cis-acting promoter elements within the LTR.
View Article and Find Full Text PDF