The COVID-19 pandemic has led to the deaths of millions of people and severe global economic impacts. Small molecule therapeutics have played an important role in the fight against SARS-CoV-2, the virus responsible for COVID-19, but their efficacy has been limited in scope and availability, with many people unable to access their benefits, and better options are needed. EDP-235 is specifically designed to inhibit the SARS-CoV-2 3CLpro, with potent nanomolar activity against all SARS-CoV-2 variants to date, as well as clinically relevant human and zoonotic coronaviruses.
View Article and Find Full Text PDFUnlabelled: Pulmonary arterial hypertension (PAH) is characterized by obliterative vascular remodeling of the small pulmonary arteries (PA) and progressive increase in pulmonary vascular resistance (PVR) leading to right ventricular (RV) failure. Although several drugs are approved for the treatment of PAH, mortality remains high. Accumulating evidence supports a pathological function of integrins in vessel remodeling, which are gaining renewed interest as drug targets.
View Article and Find Full Text PDFDiscovery efforts leading to the identification of ervogastat (PF-06865571), a systemically acting diacylglycerol acyltransferase (DGAT2) inhibitor that has advanced into clinical trials for the treatment of non-alcoholic steatohepatitis (NASH) with liver fibrosis, are described herein. Ervogastat is a first-in-class DGAT2 inhibitor that addressed potential development risks of the prototype liver-targeted DGAT2 inhibitor PF-06427878. Key design elements that culminated in the discovery of ervogastat are (1) replacement of the metabolically labile motif with a 3,5-disubstituted pyridine system, which addressed potential safety risks arising from a cytochrome P450-mediated -dearylation of PF-06427878 to a reactive quinone metabolite precursor, and (2) modifications of the amide group to a 3-THF group, guided by metabolite identification studies coupled with property-based drug design.
View Article and Find Full Text PDFBackground & Aims: EDP-305 is an oral farnesoid X receptor (FXR) agonist under development for the treatment of non-alcoholic steatohepatitis (NASH). Herein, we aimed to assess the efficacy, safety and tolerability of EDP-305 in patients with fibrotic NASH.
Methods: In this double-blind phase II study, patients with fibrotic NASH (without cirrhosis), diagnosed by historical biopsy or phenotypically, were randomized to EDP-305 1 mg, EDP-305 2.
EDP-938 is a novel non-fusion replication inhibitor of respiratory syncytial virus (RSV). It is highly active against all RSV-A and B laboratory strains and clinical isolates tested in vitro in various cell lines and assays, with half-maximal effective concentrations (EC50s) of 21, 23 and 64 nM against Long (A), M37 (A) and VR-955 (B) strains, respectively, in the primary human bronchial epithelial cells (HBECs). EDP-938 inhibits RSV at a post-entry replication step of the viral life cycle as confirmed by time-of-addition study, and the activity appears to be mediated by viral nucleoprotein (N).
View Article and Find Full Text PDFNonalcoholic steatohepatitis (NASH) is characterized by the accumulation of hepatocyte triglycerides, the synthesis of which is catalyzed by diacylglycerol acyltransferases (DGATs). Here, we investigate DGAT2 as a potential therapeutic target using an orally administered, selective DGAT2 inhibitor, PF-06427878. Treatment with PF-06427878 resulted in the reduction of hepatic and circulating plasma triglyceride concentrations and decreased lipogenic gene expression in rats maintained on a Western-type diet.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) is a hormone secreted by the liver in response to metabolic stress. In addition to its well-characterized effects on energy homeostasis, FGF21 has been shown to increase water intake in animals. In this study, we sought to further explore the effects of FGF21 on fluid homeostasis in rats.
View Article and Find Full Text PDFFGF21 plays a central role in energy, lipid, and glucose homeostasis. To characterize the pharmacologic effects of FGF21, we administered a long-acting FGF21 analog, PF-05231023, to obese cynomolgus monkeys. PF-05231023 caused a marked decrease in food intake that led to reduced body weight.
View Article and Find Full Text PDFA permeable reactive barrier, consisting of both zero valent iron (ZVI) and a biodegradable organic carbon, was evaluated for the remediation of 1,1,2-trichloroethane (1,1,2-TCA) contaminated groundwater. During an 888 day laboratory column study, degradation rates initially stabilized with a degradation half-life of 4.4±0.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) is a hormone induced by various metabolic stresses, including ketogenic and high-carbohydrate diets, that regulates energy homeostasis. In humans, SNPs in and around the FGF21 gene have been associated with macronutrient preference, including carbohydrate, fat, and protein intake. Here we show that FGF21 administration markedly reduces sweet and alcohol preference in mice and sweet preference in cynomolgus monkeys.
View Article and Find Full Text PDFDietary triglycerides (TG) are absorbed by the enterocytes of the small intestine after luminal hydrolysis into monacylglycerol and fatty acids. Before secretion on chylomicrons, these lipids are reesterified into TG, primarily through the monoacylglycerol pathway. However, targeted deletion of the primary murine monoacylglycerol acyltransferase does not quantitatively affect lipid absorption, suggesting the existence of alternative pathways.
View Article and Find Full Text PDFThe medicinal chemistry and preclinical biology of imidazopyridine-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) is described. A screening hit 1 with low lipophilic efficiency (LipE) was optimized through two key structural modifications: (1) identification of the pyrrolidine amide group for a significant LipE improvement, and (2) insertion of a sp(3)-hybridized carbon center in the core of the molecule for simultaneous improvement of N-glucuronidation metabolic liability and off-target pharmacology. The preclinical candidate 9 (PF-06424439) demonstrated excellent ADMET properties and decreased circulating and hepatic lipids when orally administered to dyslipidemic rodent models.
View Article and Find Full Text PDFInhibition of triacylglycerol (TAG) biosynthetic enzymes has been suggested as a promising strategy to treat insulin resistance, diabetes, dyslipidemia, and hepatic steatosis. Monoacylglycerol acyltransferase 3 (MGAT3) is an integral membrane enzyme that catalyzes the acylation of both monoacylglycerol (MAG) and diacylglycerol (DAG) to generate DAG and TAG, respectively. Herein, we report the discovery and characterization of the first selective small molecule inhibitors of MGAT3.
View Article and Find Full Text PDFObjective: Very low-density lipoprotein assembly and secretion are regulated by the availability of triacylglycerol. Although compelling evidence indicates that the majority of triacylglycerol in very low-density lipoprotein is derived from re-esterification of lipolytic products released by endoplasmic reticulum-associated lipases, little is known about roles of acyl-CoA:diacylglycerol acyltransferases (DGATs) in this process. We aimed to investigate the contribution of DGAT1 and DGAT2 in lipid metabolism and lipoprotein secretion in primary mouse and human hepatocytes.
View Article and Find Full Text PDFFibroblast growth factor 21 (FGF21) has evolved as a major metabolic regulator, the pharmacological administration of which causes weight loss, insulin sensitivity and glucose control in rodents and humans. To understand the molecular mechanisms by which FGF21 exerts its metabolic effects, we developed a human in vitro model of adipocytes to examine crosstalk between FGF21 and insulin signaling. Human adipose stem cell-derived (hASC) adipocytes were acutely treated with FGF21 alone, insulin alone, or in combination.
View Article and Find Full Text PDFIntrahepatic lipid accumulation is extremely common in obese subjects and is associated with the development of insulin resistance and diabetes. Hepatic diacylglycerol and triacylglycerol synthesis predominantly occurs through acylation of glycerol-3-phosphate. However, an alternative pathway for synthesizing diacylglycerol from monoacylglycerol acyltransferases (MGAT) could also contribute to hepatic glyceride pools.
View Article and Find Full Text PDFImportance Of The Field: Type 2 diabetes is a chronic disease characterized by the development of insulin resistance, impaired pancreatic β-cell function and, ultimately, hyperglycemia. The disease is highly associated with obesity and it is thought that the inappropriate deposition of lipid in tissues such as liver and muscle contributes to a reduction in insulin sensitivity which, in turn, places a burden on the β-cell to secrete more insulin to achieve normoglycemia. Over an extended period of time, this can result in β-cell failure and diminished glycemic control.
View Article and Find Full Text PDFA cocrystal structure of T1317 (3) bound to hLXRbeta was utilized in the design of a series of substituted N-phenyl tertiary amines. Profiling in binding and functional assays led to the identification of LXR modulator GSK9772 ( 20) as a high-affinity LXRbeta ligand (IC 50 = 30 nM) that shows separation of anti-inflammatory and lipogenic activities in human macrophage and liver cell lines, respectively. A cocrystal structure of the structurally related analog 19 bound to LXRbeta reveals regions within the receptor that can affect receptor modulation through ligand modification.
View Article and Find Full Text PDFThe liver X receptors LXR alpha and LXR beta are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Seminal studies with genetic and chemical tools were instrumental in the elucidation of cholesterol metabolism, gluconeogenesis, inflammation, and lipogenesis as signaling pathways that are controlled by the LXRs. First generation non-steroidal LXR agonists show beneficial effects in multiple animals models of human disease yet have not progressed in the clinic due to deleterious side effects in the liver.
View Article and Find Full Text PDFLiver receptor homolog 1 (LRH-1), an orphan nuclear receptor, is highly expressed in liver and intestine, where it is implicated in the regulation of cholesterol, bile acid, and steroid hormone homeostasis. Among the proposed LRH-1 target genes in liver are those encoding cholesterol 7alpha-hydroxylase (CYP7A1) and sterol 12alpha-hydroxylase (CYP8B1), which catalyze key steps in bile acid synthesis. In vitro studies suggest that LRH-1 may be involved both in stimulating basal CYP7A1 and CYP8B1 transcription and in repressing their expression as part of the nuclear bile acid receptor [farnesoid X receptor (FXR)]-small heterodimer partner signaling cascade, which culminates in small heterodimer partner binding to LRH-1 to repress gene transcription.
View Article and Find Full Text PDFAntagonizing the action of the human nuclear xenobiotic receptor pregnane X receptor (PXR) may have important clinical implications in preventing drug-drug interactions and improving therapeutic efficacy. We provide evidence that a naturally occurring phytoestrogen, coumestrol, is an antagonist of the nuclear receptor PXR (NR1I2). In transient transfection assays, coumestrol was able to suppress the agonist effects of SR12813 on human PXR activity.
View Article and Find Full Text PDFWe report the identification of substituted cis-bicyclo[3.3.0]-oct-2-enes as small molecule agonists of subfamily V orphan nuclear receptors (NR5A), liver receptor homolog-1 (LRH-1) and steroidogenic factor-1 (SF-1).
View Article and Find Full Text PDFThe orphan nuclear receptor liver receptor homolog 1 (LRH-1) has been reported to play an important role in bile acid biosynthesis and reverse cholesterol transport. Here, we show that LRH-1 is a key player in the control of the hepatic acute-phase response. Ectopic expression of LRH-1 with adenovirus resulted in strong inhibition of both interleukin-6 (IL-6)- and IL-1beta-stimulated haptoglobin, serum amyloid A, and fibrinogen beta gene expression in hepatocytes.
View Article and Find Full Text PDFIn addition to its function as a fatty acid hydroxylase, the peroxisome proliferator-activated receptor alpha (PPARalpha) target gene, CYP4A, has been shown to be important in the conversion of arachidonic acid to the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid, suggesting a role for this enzyme in mediating vascular tone. In the present study, the cDNA sequence of beagle dog CYP4A37, CYP4A38, and CYP4A39 from the liver was determined. Open reading frame analysis predicted that CYP4A37, CYP4A38, and CYP4A39 each comprised 510 amino acids with approximately 90% sequence identity to one another, and approximately 71 and 78% sequence identity to rat CYP4A1 and human CYP4A11, respectively.
View Article and Find Full Text PDF