Publications by authors named "Bryan Franz"

NASA's Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, recently launched in February 2024, carries two multiangle polarimeters (MAPs): the UMBC Hyper-Angular Rainbow Polarimeter (HARP2) and SRON Spectropolarimeter for Planetary Exploration One (SPEXone). Measurements from these MAPs will greatly advance ocean ecosystem and aerosol studies as their measurements contain rich information on the microphysical properties of aerosols and hydrosols. The Multi-Angular Polarimetric Ocean coLor (MAPOL) joint retrieval algorithm has been developed to retrieve aerosol and ocean color information, which uses a vector radiative transfer (RT) model as the forward model.

View Article and Find Full Text PDF

We report on observed trend anomalies in climate-relevant global ocean biogeochemical properties, as derived from satellite ocean color measurements, that show a substantial decline in phytoplankton carbon concentrations following eruptions of the submarine volcano Hunga Tonga-Hunga Ha'apai in January 2022. The anomalies are seen in remotely-sensed ocean color data sets from multiple satellite missions, but not in situ observations, thus suggesting that the observed anomalies are a result of ocean color retrieval errors rather than indicators of a major shift in phytoplankton carbon concentrations. The enhanced concentration of aerosols in the stratosphere following the eruptions results in a violation of some fundamental assumptions in the processing algorithms used to obtain marine biogeochemical properties from satellite radiometric observations, and it is demonstrated through radiative transfer simulations that this is the likely cause of the anomalous trends.

View Article and Find Full Text PDF

Spectral remote sensing reflectance, R(λ) (sr), is the fundamental quantity used to derive a host of bio-optical and biogeochemical properties of the water column from satellite ocean color measurements. Estimation of uncertainty in those derived geophysical products is therefore dependent on knowledge of the uncertainty in satellite-retrieved R. Furthermore, since the associated algorithms require R at multiple spectral bands, the spectral (i.

View Article and Find Full Text PDF

We investigated the optimal number of independent parameters required to accurately represent spectral remote sensing reflectances ( ) by performing principal component analysis on quality controlled in situ and synthetic data. We found that retrieval algorithms should be able to retrieve no more than four free parameters from spectra for most ocean waters. In addition, we evaluated the performance of five different bio-optical models with different numbers of free parameters for the direct inversion of in-water inherent optical properties (IOPs) from in situ and synthetic data.

View Article and Find Full Text PDF

Instantaneous photosynthetically available radiation (IPAR) at the ocean surface and its vertical profile below the surface play a critical role in models to calculate net primary productivity of marine phytoplankton. In this work, we report two IPAR prediction models based on the neural network (NN) approach, one for open ocean and the other for coastal waters. These models are trained, validated, and tested using a large volume of synthetic datasets for open ocean and coastal waters simulated by a radiative transfer model.

View Article and Find Full Text PDF

Ocean color (OC) remote sensing requires compensation for atmospheric scattering and absorption (aerosol, Rayleigh, and trace gases), referred to as atmospheric correction (AC). AC allows inference of parameters such as spectrally resolved remote sensing reflectance (();) at the ocean surface from the top-of-atmosphere reflectance. Often the uncertainty of this process is not fully explored.

View Article and Find Full Text PDF

The spectral distribution of marine remote sensing reflectance, R, is the fundamental measurement of ocean color science, from which a host of bio-optical and biogeochemical properties of the water column can be derived. Estimation of uncertainty in these derived properties is thus dependent on knowledge of the uncertainty in satellite-retrieved R (uc(R)) at each pixel. Uncertainty in R, in turn, is dependent on the propagation of various uncertainty sources through the R retrieval process, namely the atmospheric correction (AC).

View Article and Find Full Text PDF

We developed a fast and accurate polynomial based atmospheric correction (POLYAC) algorithm for hyperspectral radiometric measurements, which parameterizes the atmospheric path radiances using aerosol properties retrieved from co-located multi-wavelength multi-angle polarimeter (MAP) measurements. This algorithm has been applied to co-located spectrometer for planetary exploration (SPEX) airborne and research scanning polarimeter (RSP) measurements, where SPEX airborne was used as a proxy of hyperspectral radiometers, and RSP as the MAP. The hyperspectral remote sensing reflectance obtained from POLYAC is accurate when compared to Aerosol Robotic Network (AERONET), and Visible Infrared Imaging Radiometer Suite (VIIRS) ocean color products.

View Article and Find Full Text PDF
Article Synopsis
  • * Generating a comprehensive ocean colour time series is complex, involving the selection of suitable algorithms, merging data from different satellite sensors, and correcting for inter-sensor biases to ensure a consistent dataset.
  • * Validation against ground-based observations and quantifying uncertainties on a pixel-by-pixel level are crucial for ensuring data quality and supporting accurate climate studies.
View Article and Find Full Text PDF

Spectrally resolved water-leaving radiances (ocean colour) and inferred chlorophyll concentration are key to studying phytoplankton dynamics at seasonal and interannual scales, for a better understanding of the role of phytoplankton in marine biogeochemistry; the global carbon cycle; and the response of marine ecosystems to climate variability, change and feedback processes. Ocean colour data also have a critical role in operational observation systems monitoring coastal eutrophication, harmful algal blooms, and sediment plumes. The contiguous ocean-colour record reached 21 years in 2018; however, it is comprised of a number of one-off missions such that creating a consistent time-series of ocean-colour data requires merging of the individual sensors (including MERIS, Aqua-MODIS, SeaWiFS, VIIRS, and OLCI) with differing sensor characteristics, without introducing artefacts.

View Article and Find Full Text PDF

We report the first radiative transfer model that is able to simulate phytoplankton fluorescence with both photochemical and non-photochemical quenching included. The fluorescence source term in the inelastic radiative transfer equation is proportional to both the quantum yield and scalar irradiance at excitation wavelengths. The photochemical and nonphotochemical quenching processes change the quantum yield based on the photosynthetic active radiation.

View Article and Find Full Text PDF

The Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will carry into space the Ocean Color Instrument (OCI), a spectrometer measuring at 5nm spectral resolution in the ultraviolet (UV) to near infrared (NIR) with additional spectral bands in the shortwave infrared (SWIR), and two multi-angle polarimeters that will overlap the OCI spectral range and spatial coverage, i. e., the Spectrometer for Planetary Exploration (SPEXone) and the Hyper-Angular Rainbow Polarimeter (HARP2).

View Article and Find Full Text PDF

Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths.

View Article and Find Full Text PDF

The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae).

View Article and Find Full Text PDF

A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS.

View Article and Find Full Text PDF

The top-of-atmosphere (TOA) radiation field from a coupled atmosphere-ocean system (CAOS) includes contributions from the atmosphere, surface, and water body. Atmospheric correction of ocean color imagery is to retrieve water-leaving radiance from the TOA measurement, from which ocean bio-optical properties can be obtained. Knowledge of the absolute and relative magnitudes of water-leaving signal in the TOA radiation field is important for designing new atmospheric correction algorithms and developing retrieval algorithms for new ocean biogeochemical parameters.

View Article and Find Full Text PDF

Inelastic scattering plays an important role in ocean optics. The main inelastic scattering mechanisms include Raman scattering, fluorescence by colored dissolved organic matter (FDOM), and fluorescence by chlorophyll. This paper reports an implementation of all three inelastic scattering mechanisms in the exact vector radiative transfer model for coupled atmosphere and ocean Systems (CAOS).

View Article and Find Full Text PDF

With increasing demands for ocean color (OC) products with improved accuracy and well characterized, per-retrieval uncertainty budgets, it is vital to decompose overall estimated errors into their primary components. Amongst various contributing elements (e.g.

View Article and Find Full Text PDF

We have implemented Raman scattering in a vector radiative transfer model for coupled atmosphere and ocean systems. A sensitivity study shows that the Raman scattering contribution is greatest in clear waters and at longer wavelengths. The Raman scattering contribution may surpass the elastic scattering contribution by several orders of magnitude at depth.

View Article and Find Full Text PDF

The NASA Ocean Biology Processing Group (OBPG) developed two independent calibrations of the Suomi National Polar-Orbiting Partnership (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) moderate resolution reflective solar bands using solar diffuser measurements and lunar observations, and implemented a combined solar- and lunar-based calibration to track temporal changes in radiometric response of the instrument. Differences between the solar and lunar data sets have been used to identify issues and verify improvements in each. Linearization of the counts-to-radiance conversion yields a more consistent calibration at low radiance levels.

View Article and Find Full Text PDF

Time-series of marine inherent optical properties (IOPs) from ocean color satellite instruments provide valuable data records for studying long-term time changes in ocean ecosystems. Semi-analytical algorithms (SAAs) provide a common method for estimating IOPs from radiometric measurements of the marine light field. Most SAAs assign constant spectral values for seawater absorption and backscattering, assume spectral shape functions of the remaining constituent absorption and scattering components (e.

View Article and Find Full Text PDF

Ocean color measured from satellites provides daily, global estimates of marine inherent optical properties (IOPs). Semi-analytical algorithms (SAAs) provide one mechanism for inverting the color of the water observed by the satellite into IOPs. While numerous SAAs exist, most are similarly constructed and few are appropriately parameterized for all water masses for all seasons.

View Article and Find Full Text PDF

Ocean color climate data records (CDRs) require water-leaving radiances with 5% absolute and 1% relative accuracies as input. Because of the amplification of any sensor calibration errors by the atmospheric correction, the 1% relative accuracy requirement translates into a 0.1% long-term radiometric stability requirement for top-of-the-atmosphere (TOA) radiances.

View Article and Find Full Text PDF

Sensor design and mission planning for satellite ocean color measurements requires careful consideration of the signal dynamic range and sensitivity (specifically here signal-to-noise ratio or SNR) so that small changes of ocean properties (e.g., surface chlorophyll-a concentrations or Chl) can be quantified while most measurements are not saturated.

View Article and Find Full Text PDF

The uncertainties associated with MERIS remote sensing reflectance (RRS) data derived from the SeaWiFS Data Analysis System (SeaDAS) are assessed with field observations. In agreement with the strategy applied for other sensors, a vicarious calibration is conducted using in situ data from the Marine Optical BuoY offshore Hawaii, and leads to vicarious adjustment factors departing from 1 by 0.2% to 1.

View Article and Find Full Text PDF