To broaden and emphasize the educational benefits of research to more biology majors in a course setting, we developed and assessed a microbiology-focused course-based undergraduate research experience that utilizes culture-based bacterial enumeration to compare contamination present on different ground beef sources (conventional vs. organic). During the final 3 weeks of the quarter, students learned and practiced common microbiology techniques like dilution math, selective and differential media-based identification, and statistical analysis to evaluate data and test hypotheses.
View Article and Find Full Text PDFIn this study, glass rods suspended at the air-water interface in the runoff channel of Fairy Geyser, Yellowstone National Park, WY, were used as a substratum to promote the development of biofilms that resembled multilayered mat communities in the splash zone at the geyser's source. This approach enabled the establishment of the temporal relationship between the appearance of Cyanobacteria, which ultimately formed the outer green layer, and the development of a red underlayer containing Roseiflexus-like Chloroflexi. This is the first study to define time-dependent successional events involved in the development of differently colored layers within microbial mats associated with many thermal features in Yellowstone National Park.
View Article and Find Full Text PDFWe have developed a ten-week curriculum for molecular biology that uses 16S ribosomal RNA genes to characterize and compare novel bacteria from hot spring communities in Yellowstone National Park. The 16S rRNA approach bypasses selective culture-based methods. Our molecular biology course offered the opportunity for students to learn broadly applicable methods while contributing to a long-term research project.
View Article and Find Full Text PDFWe characterized and compared five geographically isolated hot springs with distinct red-layer communities in Yellowstone National Park. Individual red-layer communities were observed to thrive in temperatures ranging from 35 to 60 degrees C and at pH 7 to 9. All communities were dominated by red filamentous bacteria and contained bacteriochlorophyll a (Bchl a), suggesting that they represented novel green nonsulfur (GNS) bacteria.
View Article and Find Full Text PDF