Publications by authors named "Bryan Deans"

Xrcc2 is one of a family of five Rad51-like genes with important roles in the repair of DNA damage by homologous recombination (HR) in mammals. We have shown previously that loss of Xrcc2 in mice results in severe but variable developmental defects and embryonic lethality, potentially linked to excessive apoptosis. To look at the causes of lethality, and possibly to allow Xrcc2-/- mice to survive to birth, we have produced double knockout mice deficient in either the p53 oncoprotein or Ataxia telangiectasia mutated (Atm).

View Article and Find Full Text PDF

It is vital that embryonic stem (ES) cells, which give rise to the diverse tissues of the mature organism, maintain genetic stability. To understand mechanisms for the prevention and causation of chromosomal instability, we have used spectral karyotyping (SKY) to analyse ES cells from wild-type and repair-gene knockout mice. We chose cells deficient in Ku70 (DNA end joining), Xrcc2 (gene conversion), Ercc1 (single-strand annealing) and Csb (transcription-coupled repair) to represent potentially-important DNA repair pathways, plus an Xpc-deficient line to examine loss of global nucleotide excision repair (NER).

View Article and Find Full Text PDF

DNA damage such as double-strand breaks presents severe difficulties for the cell to repair, especially if genetic stability is to be preserved. Recombination of the damaged DNA molecule with an undamaged homologous sequence provides a potential mechanism for the high-fidelity repair of such damage, and genes encoding homologous recombination (HR) proteins have been identified in mammalian cells. Xrcc2 is a protein with homology to Rad51, the core component of HR, but with a nonredundant role in damage repair.

View Article and Find Full Text PDF

We have examined the genetic requirements for efficient repair of a site-specific DNA double-strand break (DSB) in Schizosaccharomyces pombe. Tech nology was developed in which a unique DSB could be generated in a non-essential minichromosome, Ch(16), using the Saccharomyces cerevisiae HO-endonuclease and its target site, MATa. DSB repair in this context was predominantly through interchromosomal gene conversion.

View Article and Find Full Text PDF