A detailed analysis of ptychography for three-dimensional (3D) phase reconstructions of thick specimens is performed. We introduce multi-focus ptychography, which incorporates a 4D-STEM defocus series to enhance the quality of 3D reconstructions along the beam direction through a higher overdetermination ratio. This method is compared with established multi-slice ptychography techniques, such as conventional ptychography, regularized ptychography, and multi-mode ptychography.
View Article and Find Full Text PDFAntiferromagnets hosting structural or magnetic order that breaks time reversal symmetry are of increasing interest for "beyond von Neumann" computing applications because the topology of their band structure allows for intrinsic physical properties, exploitable in integrated memory and logic function. One such group are the noncollinear antiferromagnets. Essential for domain manipulation is the existence of small net moments found routinely when the material is synthesized in thin film form and attributed to symmetry breaking caused by spin canting, either from the Dzyaloshinskii-Moriya interaction or from strain.
View Article and Find Full Text PDFDiamond's unique properties on the nanoscale make it one of the most important materials for use in biosensors and quantum computing and for components that can withstand the harsh environments of space. We synthesize oriented, faceted diamond particles by flash laser heating of glassy carbon at 16 GPa and 2300 K. Detailed transmission electron microscopy shows them to consist of a mosaic of diamond nanocrystals frequently joined at twin boundaries forming microtwins.
View Article and Find Full Text PDFIntegrated, on-chip lasers are vital building blocks in future optoelectronic and nanophotonic circuitry. Specifically, III-V materials that are of technological relevance have attracted considerable attention. However, traditional microcavity laser fabrication techniques, including top-down etching and bottom-up catalytic growth, often result in undesirable cavity geometries with poor scalability and reproducibility.
View Article and Find Full Text PDFScanning transmission electron microscopy (STEM) has a broad range of applications in materials characterization, including real-space imaging, spectroscopy, and diffraction, at length scales from the micron to sub-Ångström. The recent development and adoption of high-speed, direct electron STEM detectors has enabled diffraction patterns to be collected at each probe position, generating four-dimensional STEM (4D-STEM) datasets and opening new imaging modalities. However, the limited pixel numbers in these detectors enforce a tradeoff between angular resolution and maximum collection angle.
View Article and Find Full Text PDFSkyrmion imaging and electrical detection via topological Hall (TH) effect are two primary techniques for probing magnetic skyrmions, which hold promise for next-generation magnetic storage. However, these two kinds of complementary techniques have rarely been employed to investigate the same samples. We report the observation of nanoscale skyrmions in SrIrO/SrRuO (SIO/SRO) bilayers in a wide temperature range from 10 to 100 K.
View Article and Find Full Text PDFLow-damping magnetic materials have been widely used in microwave and spintronic applications because of their low energy loss and high sensitivity. While the Gilbert damping constant can reach 10 to 10 in some insulating ferromagnets, metallic ferromagnets generally have larger damping due to magnon scattering by conduction electrons. Meanwhile, low-damping metallic ferromagnets are desired for charge-based spintronic devices.
View Article and Find Full Text PDF