Dendritic cells (DCs) are critical in immune responses, linking innate and adaptive immunity. We found here that DC-specific deletion of the transcription factor STAT5 was not critical for development but was required for T helper type 2 (TH2), but not TH1, allergic responses in both the skin and lungs. Loss of STAT5 in DCs led to the inability to respond to thymic stromal lymphopoietin (TSLP).
View Article and Find Full Text PDFOriginally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and nonhematopoietic cell lineages, including dendritic cells, basophils, eosinophils, mast cells, CD4⁺, CD8⁺ and natural killer T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This chapter will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer.
View Article and Find Full Text PDFRegulatory T (Treg) cells, driven by the Foxp3 transcription factor, are responsible for limiting autoimmunity and chronic inflammation. We showed that a well-characterized Foxp3(gfp) reporter mouse, which expresses an N-terminal GFP-Foxp3 fusion protein, is a hypomorph that causes profoundly accelerated autoimmune diabetes on a NOD background. Although natural Treg cell development and in vitro function are not markedly altered in Foxp3(gfp) NOD and C57BL/6 mice, Treg cell function in inflammatory environments was perturbed and TGF-β-induced Treg cell development was reduced.
View Article and Find Full Text PDFOriginally shown to promote the growth and activation of B cells, TSLP is now known to have wide-ranging impacts on hematopoietic and nonhematopoietic cell lineages, including DCs, basophils, eosinophils, mast cells, CD4(+), CD8(+), and NK T cells, B cells, and epithelial cells. Whereas the role of TSLP in the promotion of TH2 responses has been studied extensively in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This review will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity, and cancer.
View Article and Find Full Text PDFCaspase-8 (casp8) is required for extrinsic apoptosis, and mice deficient in casp8 fail to develop and die in utero while ultimately failing to maintain the proliferation of T cells, B cells, and a host of other cell types. Paradoxically, these failures are not caused by a defect in apoptosis, but by a presumed proliferative function of this protease. Indeed, following mitogenic stimulation, T cells lacking casp8 or its adaptor protein FADD (Fas-associated death domain protein) develop a hyperautophagic morphology, and die a programmed necrosis-like death process termed necroptosis.
View Article and Find Full Text PDFAutophagy, an ancient cellular response where autophagic vacuoles are formed within the cytosol, is induced in response to a variety of cellular insults, including growth factor or nutrient withdrawal, organelle damage, and misfolded proteins. Autophagy is rapidly induced in T lymphocytes following antigenic stimulation and blockade of autophagic signaling greatly reduces T cell clonal expansion, suggesting that autophagy is primarily involved in promoting T cell survival. In contrast, a recently identified negative feedback loop involving FADD and caspase-8 limits the level of autophagy in T cells.
View Article and Find Full Text PDFDuring an immune response, specific recognition of microbial and tumor antigens leads to the rapid proliferation of lymphocytes. Once the immunological challenge is eliminated, the vast majority of these lymphocytes must be removed via apoptosis. Cell death is also vital for the deletion of autoreactive or chronically activated lymphocytes to prevent the development of autoimmunity in the host.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2008
Fas-associated death domain protein (FADD) and caspase-8 (casp8) are vital intermediaries in apoptotic signaling induced by tumor necrosis factor family ligands. Paradoxically, lymphocytes lacking FADD or casp8 fail to undergo normal clonal expansion following antigen receptor cross-linking and succumb to caspase-independent cell death upon activation. Here we show that T cells lacking FADD or casp8 activity are subject to hyperactive autophagic signaling and subvert a cellular survival mechanism into a potent death process.
View Article and Find Full Text PDFFas-associated death domain protein (FADD) constitutes an essential component of TNFR-induced apoptotic signaling. Paradoxically, FADD has also been shown to be crucial for lymphocyte development and activation. In this study, we report that FADD is necessary for long-term maintenance of S6 kinase (S6K) activity.
View Article and Find Full Text PDFRecently, it has been demonstrated that stimulated T cells bearing defects in caspase-8 fail to promote nuclear shuttling of NF-kappaB complexes. Such cells display strikingly similar proliferative and survival defects as T cells lacking Fas-associated death domain protein (FADD) function. We characterized NF-kappaB signaling in T cells bearing a dominant-negative FADD transgene (FADDdd).
View Article and Find Full Text PDF