Mutations in ATP1A3 encoding the catalytic subunit of the Na/K-ATPase expressed in mammalian neurons cause alternating hemiplegia of childhood (AHC) as well as an expanding spectrum of other neurodevelopmental syndromes and neurological phenotypes. Most AHC cases are explained by de novo heterozygous ATP1A3 mutations, but the fundamental molecular and cellular consequences of these mutations in human neurons are not known. In this study, we investigated the electrophysiological properties of neurons generated from AHC patient-specific induced pluripotent stem cells (iPSCs) to ascertain functional disturbances underlying this neurological disease.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53.
View Article and Find Full Text PDFMYC is an oncoprotein transcription factor that is overexpressed in the majority of malignancies. The oncogenic potential of MYC stems from its ability to bind regulatory sequences in thousands of target genes, which depends on interaction of MYC with its obligate partner, MAX. Here, we show that broad association of MYC with chromatin also depends on interaction with the WD40-repeat protein WDR5.
View Article and Find Full Text PDFTuberous sclerosis complex (TSC) is a genetic disease with severe neurologic and psychiatric manifestations including epilepsy, developmental delay, and autism. Despite much progress in defining abnormal signaling pathways including the contribution of increased mTORC1 signaling, specific abnormalities that underlie the severe neurologic features in TSC remain poorly understood. We hypothesized that epilepsy and autism in TSC result from abnormalities of γ-aminobutyric acidergic (GABAergic) interneurons.
View Article and Find Full Text PDF