Publications by authors named "Bryan B Teefy"

The African turquoise killifish (Nothobranchius furzeri), the shortest-lived vertebrate that can be bred in captivity, is an emerging model organism for aging research. Here, we describe a multitissue, single-cell gene expression atlas of female and male blood, kidney, liver, and spleen. We annotate 22 cell types, define marker genes, and infer differentiation trajectories.

View Article and Find Full Text PDF

The African turquoise killifish is an emerging vertebrate model organism with great potential for aging research due to its naturally short lifespan. Thus far, turquoise killifish aging 'omic' studies have examined a single organ, single sex and/or evaluated samples from non-reference strains. Here, we describe a resource dataset of ribosomal RNA-depleted RNA-seq libraries generated from the brain, heart, muscle, and spleen from both sexes, as well as young and old animals, in the reference GRZ turquoise killifish strain.

View Article and Find Full Text PDF

The African turquoise killifish (), the shortest-lived vertebrate that can be bred in captivity, is an emerging model organism to study vertebrate aging. Here we describe the first multi-tissue, single-cell gene expression atlas of female and male turquoise killifish tissues comprising immune and metabolic cells from the blood, kidney, liver, and spleen. We were able to annotate 22 distinct cell types, define associated marker genes, and infer differentiation trajectories.

View Article and Find Full Text PDF

A recent report by Yang et al. in Cell demonstrates that faithful DNA double-strand breaks and repair cycles phenocopy many aspects of aging in mice. Whether this progeroid phenotype is caused by a loss of epigenetic information remains to be conclusively determined.

View Article and Find Full Text PDF

Although germline cells are considered to be functionally "immortal," both the germline and supporting somatic cells in the gonad within an organism experience aging. With increased age at parenthood, the age-related decline in reproductive success has become an important biological issue for an aging population. However, molecular mechanisms underlying reproductive aging across sexes in vertebrates remain poorly understood.

View Article and Find Full Text PDF

Studying brain aging at single-cell resolution in vertebrate systems remains challenging due to cost, time, and technical constraints. Here, we demonstrate a protocol to generate single-nucleus RNA sequencing (snRNA-seq) libraries from the brains of the naturally short-lived vertebrate African turquoise killifish Nothobranchius furzeri. The African turquoise killifish has a lifespan of 4-6 months and can be housed in a cost-effective manner, thus reducing cost and time barriers to study vertebrate brain aging.

View Article and Find Full Text PDF

Transposable elements (TEs) can damage genomes, thus organisms use a variety of mechanisms to repress TE expression. The PIWI-piRNA pathway is a small RNA pathway that represses TE expression in the germline of animals. Here we explore the function of the pathway in the somatic stem cells of , a long-lived freshwater cnidarian.

View Article and Find Full Text PDF