Publications by authors named "Bruun D"

Acute intoxication with cholinesterase inhibiting organophosphates (OP) can produce life-threatening cholinergic crisis and status epilepticus (SE). Survivors often develop long-term neurological consequences, including spontaneous recurrent seizures (SRS) and impaired cognition. Numerous studies implicate OP-induced neuroinflammation as a pathogenic mechanism contributing to these chronic sequelae; however, little is known about the inflammatory phenotype of innate immune cells in the brain following acute OP intoxication.

View Article and Find Full Text PDF

Acute intoxication with high levels of organophosphate (OP) cholinesterase inhibitors can cause cholinergic crisis, which is associated with acute, life-threatening parasympathomimetic symptoms, respiratory depression and seizures that can rapidly progress to status epilepticus (SE). Clinical and experimental data demonstrate that individuals who survive these acute neurotoxic effects often develop significant chronic morbidity, including behavioral deficits. The pathogenic mechanism(s) that link acute OP intoxication to chronic neurological deficits remain speculative.

View Article and Find Full Text PDF

Acute poisoning with organophosphorus cholinesterase inhibitors (OPs), such as OP nerve agents and pesticides, can cause life threatening cholinergic crisis and status epilepticus (SE). Survivors often experience significant morbidity, including brain injury, acquired epilepsy, and cognitive deficits. Current medical countermeasures for acute OP poisoning include a benzodiazepine to mitigate seizures.

View Article and Find Full Text PDF

Acute intoxication with organophosphate (OP) cholinesterase inhibitors poses a significant public health risk. While currently approved medical countermeasures can improve survival rates, they often fail to prevent chronic neurological damage. Therefore, there is need to develop effective therapies and quantitative metrics for assessing OP-induced brain injury and its rescue by these therapies.

View Article and Find Full Text PDF

Recent experimental evidence suggests combined treatment with midazolam and allopregnanolone is more effective than midazolam alone in terminating seizures triggered by acute organophosphate (OP) intoxication. However, there are concerns that combined midazolam and allopregnanolone increases risk of adverse cardiovascular events. To address this, we used telemetry devices to record cardiovascular responses in adult male Sprague-Dawley rats acutely intoxicated with diisopropylfluorophosphate (DFP).

View Article and Find Full Text PDF

Acute organophosphate (OP) intoxication can trigger seizures that progress to status epilepticus (SE), and survivors often develop chronic morbidities, including spontaneous recurrent seizures (SRS). The pathogenic mechanisms underlying OP-induced SRS are unknown, but increased BBB permeability is hypothesized to be involved. Previous studies reported BBB leakage following OP-induced SE, but key information regarding time and regional distribution of BBB impairment during the epileptogenic period is missing.

View Article and Find Full Text PDF

The neurosteroid allopregnanolone (ALLO) is under investigation as a treatment for benzodiazepine-refractory status epilepticus (SE). Here, we assess the cardiopulmonary safety of intravenous ALLO by itself and after a clinically recommended dose of midazolam (MDZ) in two healthy adult beagles. Each dog received ALLO (1 mg/kg, IV), and after a washout period of 2 weeks, each dog was dosed with MDZ (0.

View Article and Find Full Text PDF

The field of cell biology has seen major advances in both cellular imaging modalities and the development of automated image analysis platforms that increase rigor, reproducibility, and throughput for large imaging data sets. However, there remains a need for tools that provide accurate morphometric analysis of single cells with complex, dynamic cytoarchitecture in a high-throughput and unbiased manner. We developed a fully automated image-analysis algorithm to rapidly detect and quantify changes in cellular morphology using microglia cells, an innate immune cell within the central nervous system, as representative of cells that exhibit dynamic and complex cytoarchitectural changes.

View Article and Find Full Text PDF

Introduction: Previous studies have found that online booking systems may be the preferred scheduling tool when booking appointments with healthcare providers. The aim of this study was to examine I) if outpatients with cancer and relatives of cancer patients wanted to use an online booking system to book appointments for the CT examinations, and II) if they wanted to book specific radiographers for the CT examinations.

Methods: An online questionnaire was distributed to outpatients with cancer and relatives of cancer patients registered in the user panel of the Danish Cancer Society.

View Article and Find Full Text PDF

Organophosphate (OP) nerve agents and pesticides are a class of neurotoxic compounds that can cause status epilepticus (SE), and death following acute high-dose exposures. While the standard of care for acute OP intoxication (atropine, oxime, and high-dose benzodiazepine) can prevent mortality, survivors of OP poisoning often experience long-term brain damage and cognitive deficits. Preclinical studies of acute OP intoxication have primarily used rat models to identify candidate medical countermeasures.

View Article and Find Full Text PDF

Acute intoxication with tetramethylenedisulfotetramine (TETS) can trigger status epilepticus (SE) in humans. Survivors often exhibit long-term neurological effects, including electrographic abnormalities and cognitive deficits, but the pathogenic mechanisms linking the acute toxic effects of TETS to chronic outcomes are not known. Here, we use advanced in vivo imaging techniques to longitudinally monitor the neuropathological consequences of TETS-induced SE in two different mouse strains.

View Article and Find Full Text PDF

Background: Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity.

View Article and Find Full Text PDF

Combinations of midazolam, allopregnanolone, and perampanel were assessed for antiseizure activity in a rat diisopropylfluorophosphate (DFP) status epilepticus model. Animals receiving DFP followed by atropine and pralidoxime exhibited continuous high-amplitude rhythmical electroencephalography (EEG) spike activity and behavioral seizures for more than 5 hours. Treatments were administered intramuscularly 40 min after DFP.

View Article and Find Full Text PDF

Acute intoxication with organophosphorus cholinesterase inhibitors (OPs) can trigger seizures that rapidly progress to life-threatening status epilepticus. Diazepam, long considered the standard of care for treating OP-induced seizures, is being replaced by midazolam. Whether midazolam is more effective than diazepam in mitigating the persistent effects of acute OP intoxication has not been rigorously evaluated.

View Article and Find Full Text PDF

Organophosphate (OP) threat agents can trigger seizures that progress to status epilepticus, resulting in persistent neuropathology and cognitive deficits in humans and preclinical models. However, it remains unclear whether patients who do not show overt seizure behavior develop neurological consequences. Therefore, this study compared two subpopulations of rats with a low versus high seizure response to diisopropylfluorophosphate (DFP) to evaluate whether acute OP intoxication causes persistent neuropathology in non-seizing individuals.

View Article and Find Full Text PDF

Acute intoxication with picrotoxin or the rodenticide tetramethylenedisulfotetramine (TETS) can cause seizures that rapidly progress to status epilepticus and death. Both compounds inhibit γ-aminobutyric acid type-A (GABA) receptors with similar potency. However, TETS is approximately 100 × more lethal than picrotoxin.

View Article and Find Full Text PDF

Organophosphates (OPs), a class of phosphorus-containing chemicals that act by disrupting cholinergic transmission, include both toxic and fast-acting chemical warfare agents as well as less toxic but more easily accessible OP pesticides. The classical atropine/2-PAM antidote fails to protect against long-term symptoms following acute intoxication with OPs at levels that trigger status epilepticus. Acute OP intoxication also causes a robust neuroinflammatory response, which is implicated in the pathogenesis of long-term effects.

View Article and Find Full Text PDF

While epidemiological data support the link between reduced heart rate variability (HRV) and a multitude of pathologies, the mechanisms underlying changes in HRV and disease progression are poorly understood. Even though we have numerous rodent models of disease for mechanistic studies, not being able to reliably measure HRV in conscious, freely moving rodents has hindered our ability to extrapolate the role of HRV in the progression from normal physiology to pathology. The sheer number of heart beats per day (>800,000 in mice) makes data exclusion both time consuming and daunting.

View Article and Find Full Text PDF

Acute intoxication with organophosphates (OPs) can trigger status epilepticus followed by persistent cognitive impairment and/or electroencephalographic abnormalities. Neuroinflammation is widely posited to influence these persistent neurological consequences. However, testing this hypothesis has been challenging, in part because traditional biometrics preclude longitudinal measures of neuroinflammation within the same animal.

View Article and Find Full Text PDF

Current medical countermeasures for organophosphate (OP)-induced status epilepticus (SE) are not effective in preventing long-term morbidity and there is an urgent need for improved therapies. Rat models of acute intoxication with the OP, diisopropylfluorophosphate (DFP), are increasingly being used to evaluate therapeutic candidates for efficacy in mitigating the long-term neurologic effects associated with OP-induced SE. Many of these therapeutic candidates target neuroinflammation and oxidative stress because of their implication in the pathogenesis of persistent neurologic deficits associated with OP-induced SE.

View Article and Find Full Text PDF

Acute intoxication with organophosphate cholinesterase inhibitors (OPs) is a significant human health threat, and current medical countermeasures for OP poisoning are of limited therapeutic efficacy. The rat model of acute intoxication with diisopropylfluorophosphate (DFP) is increasingly being used to test candidate compounds for efficacy in protecting against the immediate and long-term consequences of acute OP toxicity. In this model, rats are typically pretreated with pyridostigmine bromide (PB), a reversible cholinesterase inhibitor, to enhance survival.

View Article and Find Full Text PDF

Epoxyeicosatrienoic acids (EETs), metabolites of arachidonic acid derived from the cytochrome P450 enzymes, are mainly metabolized by soluble epoxide hydrolase (sEH) to their corresponding diols. EETs but not their diols, have anti-inflammatory properties, and inhibition of sEH might provide protective effects against inflammatory bone loss. Thus, in the present study, we tested the selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in a mouse model of periodontitis induced by infection with Oral treatment of wild-type mice with TPPU and sEH knockout (KO) animals showed reduced bone loss induced by This was associated with decreased expression of key osteoclastogenic molecules, receptor activator of nuclear factor-κB/RANK ligand/osteoprotegerin, and the chemokine monocyte chemotactic protein 1 in the gingival tissue without affecting bacterial counts.

View Article and Find Full Text PDF

Similar to organophosphate (OP) nerve agents, diisopropylfluorophosphate (DFP) rapidly and irreversibly inhibits acetylcholinesterase, leading to convulsions that can progress to status epilepticus (SE). However, in contrast to the OP nerve agents, the long-term consequences of DFP-induced SE are not well known. Thus, we characterized the spatiotemporal profile of neuropathology during the first 2 months following acute DFP intoxication.

View Article and Find Full Text PDF

Acute intoxication with organophosphates (OPs) can trigger seizures that progress to status epilepticus, and survivors often exhibit chronic neuropathology, cognitive impairment, affective disorders, and/or electroencephalographic abnormalities. Understanding how acute injury transitions to persistent neurological sequelae is critical to developing medical countermeasures for mitigating damage following OP-induced seizures. Here, we used in vivo magnetic resonance imaging (MRI) to monitor the spatiotemporal patterns of neuropathology for 1 month after acute intoxication with diisopropylfluorophosphate (DFP).

View Article and Find Full Text PDF

Background: Acute intoxication with organophosphorus (OP) cholinesterase inhibitors can trigger convulsions that progress to life-threatening status epilepticus. Survivors face long-term morbidity including mild-to-severe decline in memory. It is posited that neuroinflammation plays a key role in the pathogenesis of OP-induced neuropsychiatric deficits.

View Article and Find Full Text PDF