Disorganization of the desmin network is associated with cardiac and skeletal myopathies characterized by accumulation of desmin-containing aggregates in the cells. Multiple associations of intermediate filament proteins form a network to increase mechanical and functional stability. Synemin is a desmin-associated type VI intermediate filament protein.
View Article and Find Full Text PDFMutations in the lamin A/C (LMNA) gene that cause Hutchinson-Gilford progeria syndrome (HGPS) lead to expression of a protein called progerin with 50 amino acids deleted from the tail of prelamin A. In cells from patients with HGPS, both the amount and distribution of heterochromatin are altered. We designed in vitro assays to ask whether such alterations might reflect changes in chromatin, DNA and/or histone binding properties of progerin compared to wild-type lamin C-terminal tails.
View Article and Find Full Text PDFDesmin myopathy is a heterogeneous neuromuscular disorder characterized by skeletal myopathy and cardiomyopathy, inherited mostly in an autosomal dominant pattern. We report a five generation Uruguayan family with severe cardiomyopathy and skeletal myopathy. Its most striking features are: atrial dilation, arrhythmia, conduction block and sudden death due to conduction impairment.
View Article and Find Full Text PDFDermaseptin S9 (Drs S9), GLRSKIWLWVLLMIWQESNKFKKM, isolated from frog skin, does not resemble any of the cationic and amphipathic antimicrobial peptides identified to date, having a highly hydrophobic core sequence flanked at either side by cationic termini. Previous studies [Lequin O, Ladram A, Chabbert A, Bruston F, Convert O, Vanhoye D, Chassaing G, Nicolas P & Amiche M (2006) Biochemistry45, 468-480] demonstrated that this peptide adopted a non-amphipathic alpha-helical conformation in trifluoroethanol/water mixtures, but was highly aggregated in aqueous solutions and in the presence of sodium dodecyl sulfate micelles. Circular dichroism, FTIR and attenuated total reflectance FTIR spectroscopies, combined with a surface plasmon resonance study, show that Drs S9 forms stable and ordered beta-sheet aggregates in aqueous buffers or when bound to anionic or zwitterionic phospholipid vesicles.
View Article and Find Full Text PDFThe Plasticins are a family of antimicrobial, 23-29-residue Gly-Leu-rich ortholog peptides from the frog skin that have very similar amino acid sequences, hydrophobicities, and amphipathicities but differ markedly in their conformational plasticity and spectrum of activity. The intrinsic flexibility and structural malleability of Plasticins modulate their ability to bind to and disrupt the bilayer membranes of prokaryotic and eukaryotic cells, and/or to reach intracellular targets, therefore, triggering functional versatility. The discussion is opened herein on several examples of other membrane-active peptides, like viral fusion peptides, cell-penetrating peptides, that are able to display antimicrobial activity.
View Article and Find Full Text PDFPlasticins (23 long-residue glycine-leucine-rich dermaseptin-related peptides produced by the skin of South American hylids) have very similar amino acid sequences, hydrophobicities, and amphipathicities, but differ in their membrane-damaging properties and structurations (i.e. destabilized helix states, beta-hairpin, beta-sheet, and disordered states) at anionic and zwitterionic membrane interfaces.
View Article and Find Full Text PDFThe present study investigates the relationships between structural polymorphism, adsorption onto membrane mimetic support, lipid disturbance, and biological activity of bactericidal 23-residue, glycine-leucine-rich dermaseptin orthologues from the Phyllomedusinae frog skin, the "plasticins". Biological activities were evaluated using the membrane models DMPG (1,2-dimyristoyl-sn-glycero-3-phosphatidylglycerol) for prokaryotic membranes and DMPC (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) for eukaryotic membranes. We performed a conformational analysis of plasticins by molecular simulations and spectroscopic methods and analyzed phospholipid perturbations by infrared spectroscopy.
View Article and Find Full Text PDFThe dermaseptins S are closely related peptides with broad-spectrum antibacterial activity that are produced by the skin of the South American hylid frog, Phyllomedusa sauvagei. These peptides are polycationic (Lys-rich), alpha-helical, and amphipathic, with their polar/charged and apolar amino acids on opposing faces along the long axis of the helix cylinder. The amphipathic alpha-helical structure is believed to enable the peptides to interact with membrane bilayers, leading to permeation and disruption of the target cell.
View Article and Find Full Text PDFThe skins of closely related frog species produce Gly-Leu-rich peptide orthologs that have very similar sequences, hydrophobicities, and amphipathicities but differ markedly in their net charge and membrane-damaging properties. Cationic Gly-Leu-rich peptides are hemolytic and very potent against microorganisms. Peptides with no net charge have only hemolytic activity.
View Article and Find Full Text PDFDermaseptins are antimicrobial peptides from frog skin that have high membrane-lytic activity against a broad spectrum of microorganisms. The structure of dermaseptin B2 in aqueous solution, in TFE/water mixtures, and in micellar and nonmicellar SDS was analyzed by CD, FTIR, fluorescence, and NMR spectroscopy combined with molecular dynamics calculations. Dermaseptin B2 is unstructured in water, but helical conformations, mostly in segment 3-18, are stabilized by addition of TFE.
View Article and Find Full Text PDFThe antimicrobial activity of cationic amphipathic peptides is due mainly to the adsorption of peptides onto target membranes, which can be modulated by such physicochemical parameters as charge and hydrophobicity. We investigated the structure of dermaseptin B2 (Drs B2) at the aqueous/synthetic solid support interface and its adsorption kinetics using attenuated total reflection Fourier transform infrared spectroscopy and surface plasmon resonance. We determined the conformation and affinity of Drs B2 adsorbed onto negatively charged (silica or dextran) and hydrophobic supports.
View Article and Find Full Text PDFThe dermal glands of frogs produce antimicrobial peptides that protect the skin against noxious microorganisms and assist in wound repair. The sequences of these peptides are very dissimilar, both within and between species, so that the 5000 living anuran frogs may produce approximately 100 000 different antimicrobial peptides. The antimicrobial peptides of South American hylid frogs are derived from precursors, the preprodermaseptins, whose signal peptides and intervening sequences are remarkably conserved, but their C-terminal domains are markedly diverse, resulting in mature peptides with different lengths, sequences and antimicrobial spectra.
View Article and Find Full Text PDFWe are attempting to supply a new insight on interaction between Na(+)/K(+)-ATPase and H(2)O(2). We demonstrate that in vitro the Na(+)/K(+)-ATPase, a non heme-protein, is able to disproportionate H(2)O(2) catalatically into dioxygen and water, as well as C(40) catalase. By polarography, we quantify O(2) production and by Raman spectroscopy H(2)O(2) consumption.
View Article and Find Full Text PDFIn solutions of CuCl2 and adenine copper can be bound to adenine. Two Cu(adenine)(2) complexes [Cu(C(5)H(5)N(5))(2)]2+/Cu(C(5)H(4)N(5))(2)] are in equilibrium with free adenine. Copper-adenine complexes present a catalytic activity (e.
View Article and Find Full Text PDF