Publications by authors named "Brushart T"

To restore function after nerve injury, axons must regenerate from the injury site to the periphery, then reinnervate appropriate end organs when they arrive. Only 10 % of adults who suffer nerve injury will regain normal function, often because axons regenerate to functionally inappropriate targets (Brushart, 2011). The peripheral destination of these axons is largely determined by the pathways they enter at the site of nerve repair.

View Article and Find Full Text PDF

During mammalian embryonic development sensory and motor axons interact as an integral part of the pathfinding process. During regeneration, however, little is known of their interactions with one another. It is thus possible that sensory axons might influence motor axon regeneration in ways not currently appreciated.

View Article and Find Full Text PDF

Developing tissues dictate the amount and type of innervation they require by secreting neurotrophins, which promote neuronal survival by activating distinct tyrosine kinase receptors. Here, we show that nerve growth factor (NGF) signaling through neurotrophic tyrosine kinase receptor type 1 (TrkA) directs innervation of the developing mouse femur to promote vascularization and osteoprogenitor lineage progression. At the start of primary ossification, TrkA-positive axons were observed at perichondrial bone surfaces, coincident with NGF expression in cells adjacent to centers of incipient ossification.

View Article and Find Full Text PDF

Background Electrical stimulation immediately following nerve lesion helps regenerating axons cross the subsequently grafted nerve repair site. However, the results and the mechanisms remain open to debate. Some findings show that stimulation after crush injury increases axonal crossing of the repair site without affecting regeneration speed.

View Article and Find Full Text PDF

Functional testing has assumed a progressively dominant role in validating the success of experimental nerve repair. Results obtained in one model, however, cannot predict the results in others because they reflect the coordinated interaction of several muscles across multiple joints. As a result, many combinations of topographically correct and incorrect muscle reinnervation could produce the same result.

View Article and Find Full Text PDF

Objective: Sports-related peripheral nerve injuries are common among athletes and are often underrecognized because of symptom overlap with more usual sports-related bone, soft-tissue, and joint injuries.

Conclusion: MRI plays an increasingly important role in the workup of peripheral nerve injuries and may reveal severe nerve abnormalities before they are diagnosed by electrodiagnostic testing or a clinical examination. Sport-specific peripheral nerve injuries and their MRI appearance will be discussed in this article.

View Article and Find Full Text PDF

Background: Schwann cells in the distal stump of transected nerve upregulate growth factors that support regeneration on a modality-specific basis. It is unclear, however, which of these preferentially support motor axon regeneration. Identification of these factors will require a model that can isolate growth factor effects to growing axons while reproducing the complex three-dimensional structure of peripheral nerve.

View Article and Find Full Text PDF

Previous studies demonstrated that Schwann cells (SCs) express distinct motor and sensory phenotypes, which impact the ability of these pathways to selectively support regenerating neurons. In the present study, unbiased microarray analysis was used to examine differential gene expression in denervated motor and sensory pathways in rats. Several genes that were significantly upregulated in either denervated sensory or motor pathways were identified and two secreted factors were selected for further analysis: osteopontin (OPN) and clusterin (CLU) which were upregulated in denervated motor and sensory pathways, respectively.

View Article and Find Full Text PDF

Preferential motor reinnervation (PMR) is the tendency for motor axons regenerating after repair of mixed nerve to reinnervate muscle nerve and/or muscle rather than cutaneous nerve or skin. PMR may occur in response to the peripheral nerve pathway alone in juvenile rats (Brushart, 1993; Redett et al., 2005), yet the ability to identify and respond to specific pathway markers is reportedly lost in adults (Uschold et al.

View Article and Find Full Text PDF

Myelinating Schwann cells express distinct sensory and motor phenotypes as defined by their differing patterns of growth factor production (Hoke et al., 2006). The heterogeneous growth factor requirements of sensory and motor neurons, however, suggest that Schwann cell phenotype might vary across a broad spectrum.

View Article and Find Full Text PDF

Regeneration in the peripheral nervous system offers unique opportunities and challenges to medicine. Compared to the central nervous system, peripheral axons can and do regenerate resulting in functional recovery, especially if the distance to target is short as in distal limb injuries. However, this regenerative capacity is often incomplete and functional recovery with proximal lesions is limited.

View Article and Find Full Text PDF

Objective: Injured peripheral nerves regenerate at very slow rates. Therefore, proximal injury sites such as the brachial plexus still present major challenges, and the outcomes of conventional treatments remain poor. This is in part attributable to a progressive decline in the Schwann cells' ability to provide a supportive milieu for the growth cone to extend and to find the appropriate target.

View Article and Find Full Text PDF

The inhibitory growth environment of myelin and extracellular matrix proteoglycans in the central nervous system may be overcome by elevating neuronal cAMP or degrading inhibitory proteoglycans with chondroitinase ABC (ChABC). In this study, we asked whether similar mechanisms operate in peripheral nerve regeneration where effective Wallerian degeneration removes myelin and extracellular proteoglycans slowly. We repaired transected common peroneal (CP) nerve in rats and either elevated cAMP in the axotomized neurons by subcutaneous rolipram, a specific inhibitor of phosphodiesterase IV, and/or promoted degradation of proteoglycans in the distal nerve stump by local ChABC administration.

View Article and Find Full Text PDF

The role of pathway-derived growth factors in the support of peripheral axon regeneration remains elusive. Few appropriate knock-out mice are available, and gene silencing techniques are rarely 100% effective. To overcome these difficulties, we have developed an in vitro organotypic co-culture system that accurately models peripheral nerve repair in the adult mammal.

View Article and Find Full Text PDF

Objective: Poor functional recovery after peripheral nerve injury is generally attributed to irreversible target atrophy. In rats, we addressed the functional outcomes of prolonged neuronal separation from targets (chronic axotomy for up to 1 year) and atrophy of Schwann cells (SCs) in distal nerve stumps, and whether electrical stimulation (ES) accelerates axon regeneration. In carpal tunnel syndrome (CTS) patients with severe axon degeneration and release surgery, we asked whether ES accelerates muscle reinnervation.

View Article and Find Full Text PDF

Clinical outcomes of nerve grafting are often inferior to those of end-to-end nerve repair. This may be due, in part, to the routine use of cutaneous nerve to support motor axon regeneration. In previous work, we have demonstrated that Schwann cells express distinct sensory and motor phenotypes, and that these promote regeneration in a modality-specific fashion.

View Article and Find Full Text PDF

The declining capacity for injured peripheral nerves to regenerate their axons with time and distance is accounted for, at least in part, by the chronic axotomy of the neurons and Schwann cell denervation prior to target reinnervation. A largely unrecognized site of delay is the surgical suture site where, in rats, 4 weeks is required for all neurons to regenerate their axons across the site. Low frequency stimulation for just 1 h after surgery accelerates this axon crossing in association with upregulation of neurotrophic factors in the neurons.

View Article and Find Full Text PDF

Schwann cell phenotype is classified as either myelinating or nonmyelinating. Additional phenotypic specialization is suggested, however, by the preferential reinnervation of muscle pathways by motoneurons. To explore potential differences in growth factor expression between sensory and motor nerve, grafts of cutaneous nerve or ventral root were denervated, reinnervated with cutaneous axons, or reinnervated with motor axons.

View Article and Find Full Text PDF

Functional recovery after peripheral nerve injury is often poor despite high regenerative capacity of peripheral neurons. In search for novel treatments, brief electrical stimulation of the acutely lesioned nerve has recently been identified as a clinically feasible approach increasing precision of axonal regrowth. The effects of this stimulation appear to be mediated by BDNF and its receptor, TrkB, but the down-stream effectors are unknown.

View Article and Find Full Text PDF

Motor axons regenerating after repair of mixed nerve reinnervate pathways leading to muscle more often than those leading to skin [preferential motor reinnervation (PMR)]. Motoneurons that initially project collaterals to both muscle and skin prune incorrect projections to generate specificity. The number of motor axon collaterals maintained entirely within cutaneous or muscle pathways, however, is unknown.

View Article and Find Full Text PDF

Electrical stimulation at the time of nerve repair promotes motoneurons to reinnervate appropriate pathways leading to muscle and stimulates sensory neurons to regenerate. The present experiments examine the effects of electrical stimulation on the specificity of sensory axon regeneration. The unoperated rat femoral cutaneous branch is served by 2-3 times more DRG neurons than is the muscle branch.

View Article and Find Full Text PDF

A century ago, Ramon y Cajal described the generalized response of regenerating peripheral axons to their environment. By using mice that express fluorescent proteins in their axons, we are now able to quantify the response of individual axons to nerve transection and repair. Sciatic nerves from nonexpressing mice were grafted into those expressing a yellow variant of green fluorescent protein, then examined at 5, 7, or 10 days after repair.

View Article and Find Full Text PDF

Predegeneration of nerve enhances its ability to support axon regeneration. Trophic factors are upregulated by reactive Schwann cells while potentially inhibitory molecules are removed. These experiments isolate the effects of one such inhibitory molecule, the myelin-associated glycoprotein (MAG), to determine its role in modifying regeneration after nerve repair.

View Article and Find Full Text PDF

Motoneurons reinnervate the distal stump at variable rates after peripheral nerve transection and suture. In the rat femoral nerve model, reinnervation is already substantial 3 weeks after repair, but is not completed for an additional 7 weeks. However, this "staggered regeneration" can be temporally compressed by application of 20 Hz electrical stimulation to the nerve for 1 hr.

View Article and Find Full Text PDF