Although hydrochar and biochar have been used as soil conditioners, there is not a clear understanding of how their properties changes due to aging impacts their colloidal particles behavior on the soil system. From this premise, we produced hydrochar and biochar from the same feedstock (cashew bagasse) and aged with different chemical methods: (i) using hydrogen peroxide, (ii) a mixture of nitric and sulfuric acids, and (iii) hot water. It was analyzed the effects of aging on the stability of the carbonaceous materials (CMs) colloids in aqueous medium with different ionic strength (single systems), as well as the stability of the natural-soil colloid when interacting with biochar and hydrochar colloids (binary systems).
View Article and Find Full Text PDFBackground: This study aimed to evaluate the X-linked hypophosphatemic rickets (XLHR)-related compositional and microhardness tooth aspects.
Material And Methods: One affected and one non-affected teeth by XLHR were sectioned transversely, and each section was separated for Micro-Raman spectroscopy, Knoop microhardness and scanning electron microscopy with energy dispersive x-ray microanalysis (SEM-EDS). The outcomes of these analyses were assessed.
Albendazole, an effective broad-spectrum anthelmintic agent, showed unpredictable therapeutic response caused by poor water solubility and slow dissolution rate. Then, novel binary and multicomponent supramolecular systems of two different solid forms of albendazole (I and II) with maltodextrin alone or with glutamic acid were studied as an alternative to improve the oral bioavailability of albendazole. The interactions and effects on the properties of albendazole were studied in solution and solid state.
View Article and Find Full Text PDF