While the role of cancer stem cells (CSCs) in tumorigenesis, chemoresistance, metastasis, and relapse has been extensively studied in solid tumors, such as adenocarcinomas or sarcomas, the same cannot be said for neuroendocrine neoplasms (NENs). While lagging, CSCs have been described in numerous NENs, including gastrointestinal and pancreatic NENs (PanNENs), and they have been found to play critical roles in tumor initiation, progression, and treatment resistance. However, it seems that there is still skepticism regarding the role of CSCs in NENs, even in light of studies that support the CSC model in these tumors and the therapeutic benefits of targeting them.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) requires innovative therapeutic strategies to counteract its progression and metastatic potential. Since the majority of patients are diagnosed with advanced metastatic disease, treatment strategies targeting not only the primary tumor but also metastatic lesions are needed. Tumor-Associated Macrophages (TAMs) have emerged as central players, significantly influencing PDAC progression and metastasis.
View Article and Find Full Text PDFCancer stem cells (CSC) in colorectal cancer drive intratumoral heterogeneity and distant metastases. Previous research from our group showed that CSCs can be easily detected by autofluorescence (AF). The aim of the present study was to evaluate the potential role of AF CSCs as a prognostic biomarker for colorectal cancer relapse.
View Article and Find Full Text PDFBackground: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma.
View Article and Find Full Text PDFCisplatin-based chemotherapy has associated clinical disadvantages, such as high toxicity and resistance. Thus, the development of new antitumor metallodrugs able to overcome different clinical barriers is a public healthcare priority. Here, we studied the mechanism of action of the isomers trans and cis-[PtI(isopropylamine)] (I5 and I6, respectively) against gastrointestinal cancer cells.
View Article and Find Full Text PDFBackground: Previous studies by our group have shown that oxidative phosphorylation (OXPHOS) is the main pathway by which pancreatic cancer stem cells (CSCs) meet their energetic requirements; therefore, OXPHOS represents an Achille's heel of these highly tumorigenic cells. Unfortunately, therapies that target OXPHOS in CSCs are lacking.
Methods: The safety and anti-CSC activity of a ruthenium complex featuring bipyridine and terpyridine ligands and one coordination labile position (Ru1) were evaluated across primary pancreatic cancer cultures and in vivo, using 8 patient-derived xenografts (PDXs).
Pancreatic ductal adenocarcinoma (PDAC) remains one of the most lethal cancers worldwide, mainly due to its late diagnosis and lack of effective therapies, translating into a low 5-year 12% survival rate, despite extensive clinical efforts to improve outcomes. International cooperative studies have provided informative multiomic landscapes of PDAC, but translation of these discoveries into clinical advances are lagging. Likewise, early diagnosis biomarkers and new therapeutic tools are sorely needed to tackle this cancer.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers worldwide, primarily due to its robust desmoplastic stroma and immunosuppressive tumor microenvironment (TME), which facilitate tumor progression and metastasis. In addition, fibrous tissue leads to sparse vasculature, high interstitial fluid pressure, and hypoxia, thereby hindering effective systemic drug delivery and immune cell infiltration. Thus, remodeling the TME to enhance tumor perfusion, increase drug retention, and reverse immunosuppression has become a key therapeutic strategy.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related death worldwide. Its late diagnosis and consequently poor survival make necessary the search for new therapeutic targets. The mitogen-activated protein kinase (MAPK)-interacting kinase 1 (MNK1) is overexpressed in lung cancer and correlates with poor overall survival in non-small cell lung cancer (NSCLC) patients.
View Article and Find Full Text PDFOver 90% of pancreatic cancers present mutations in KRAS, one of the most common oncogenic drivers overall. Currently, most KRAS mutant isoforms cannot be targeted directly. Moreover, targeting single RAS downstream effectors induces adaptive resistance mechanisms.
View Article and Find Full Text PDFBackground: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood.
Methods: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively.
Objective: The lysyl oxidase-like protein 2 (LOXL2) contributes to tumour progression and metastasis in different tumour entities, but its role in pancreatic ductal adenocarcinoma (PDAC) has not been evaluated in immunocompetent in vivo PDAC models.
Design: Towards this end, we used PDAC patient data sets, patient-derived xenograft in vivo and in vitro models, and four conditional genetically-engineered mouse models (GEMMS) to dissect the role of LOXL2 in PDAC. For GEMM-based studies, ; ; mice (KPC) and the ; mice (KC) were crossed with allele floxed mice ( ) or conditional overexpressing mice (R26 ) to generate KPCL2 or KCL2 and KPCL2 or KCL2 mice, which were used to study overall survival; tumour incidence, burden and differentiation; metastases; epithelial to mesenchymal transition (EMT); stemness and extracellular collagen matrix (ECM) organisation.
Cancers (Basel)
March 2022
Pancreatic ductal adenocarcinoma (PDA) is characterized by an extremely poor prognosis due to its late diagnosis and strong chemoresistance to the current treatments. Therefore, finding new therapeutic targets is an urgent need nowadays. In this study, we report the role of the chromatin remodeler BPTF (Bromodomain PHD Finger Transcription Factor) as a therapeutic target in PDA.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
December 2021
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, requiring novel treatments to target both cancer cells and cancer stem cells (CSCs). Altered splicing is emerging as both a novel cancer hallmark and an attractive therapeutic target. The core splicing factor SF3B1 is heavily altered in cancer and can be inhibited by Pladienolide-B, but its actionability in PDAC is unknown.
View Article and Find Full Text PDFThe authors wish to make the following corrections to this paper [...
View Article and Find Full Text PDFTo assess the role of telomerase activity and telomere length in pancreatic CSCs we used different CSC enrichment methods (CD133, ALDH, sphere formation) in primary patient-derived pancreatic cancer cells. We show that CSCs have higher telomerase activity and longer telomeres than bulk tumor cells. Inhibition of telomerase activity, using genetic knockdown or pharmacological inhibitor (BIBR1532), resulted in CSC marker depletion, abrogation of sphere formation in vitro and reduced tumorigenicity in vivo.
View Article and Find Full Text PDFFirst-line treatment with regorafenib in frail metastatic colorectal cancer (mCRC) patients has shown some benefit. To accurately identify such patients before treatment, we studied blood biomarkers and primary tumor molecules. We unveiled serum microRNAs (miRNAs), single-nucleotide polymorphisms (SNPs) in angiogenic-related genes, and Notch 1 expression as biomarkers associated with response or toxicity.
View Article and Find Full Text PDFBackground & Aims: The existence of different subtypes of pancreatic ductal adenocarcinoma (PDAC) and their correlation with patient outcome have shifted the emphasis on patient classification for better decision-making algorithms and personalized therapy. The contribution of mechanisms regulating the cancer stem cell (CSC) population in different subtypes remains unknown.
Methods: Using RNA-seq, we identified B-cell CLL/lymphoma 3 (BCL3), an atypical nf-κb signaling member, as differing in pancreatic CSCs.
Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there are many areas for improvement in diagnostics and patient management. The five-year survival rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that is treatment resistant.
View Article and Find Full Text PDFPancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, partly due to its intrinsic aggressiveness, metastatic potential, and chemoresistance of the contained cancer stem cells (CSCs). Pancreatic CSCs strongly rely on mitochondrial metabolism to maintain their stemness, therefore representing a putative target for their elimination. Since mitochondrial homeostasis depends on the tightly controlled balance between fusion and fission processes, namely mitochondrial dynamics, we aim to study this mechanism in the context of stemness.
View Article and Find Full Text PDFCancer stem cells (CSCs) are defined as a subpopulation of "stem"-like cells within the tumor with unique characteristics that allow them to maintain tumor growth, escape standard anti-tumor therapies and drive subsequent repopulation of the tumor. This is the result of their intrinsic "stem"-like features and the strong driving influence of the CSC niche, a subcompartment within the tumor microenvironment that includes a diverse group of cells focused on maintaining and supporting the CSC. CXCL12 is a chemokine that plays a crucial role in hematopoietic stem cell support and has been extensively reported to be involved in several cancer-related processes.
View Article and Find Full Text PDF