Osteoporosis and Alzheimer's disease (AD) mainly affect older individuals, and the possibility of an underlying link contributing to their shared epidemiological features has rarely been investigated. In the current study, we investigated the association between levels of plasma sclerostin (SOST), a protein primarily produced by bone, and brain amyloid-beta (Aβ) load, a pathological hallmark of AD. The study enrolled participants meeting a set of screening inclusion and exclusion criteria and were stratified into Aβ- (n = 65) and Aβ+ (n = 35) according to their brain Aβ load assessed using Aβ-PET (positron emission tomography) imaging.
View Article and Find Full Text PDFIn Parkinson's disease (PD), gut inflammation is hypothesised to contribute to α-synuclein aggregation, but gastrointestinal α-synuclein expression is poorly characterised. Cationic arginine-rich peptides (CARPs) are an emerging therapeutic option that exerts various neuroprotective effects and may target the transmission of protein aggregates. This study aimed to investigate endogenous α-synuclein expression in enteroendocrine STC-1 cells and the potential of the CARP, R18D (18-mer of D-arginine), to prevent internalisation of pre-formed α-synuclein fibrils (PFFs) in enteroendocrine cells in vitro.
View Article and Find Full Text PDFTopographic mapping of neural circuits is fundamental in shaping the structural and functional organization of brain regions. This developmentally important process is crucial not only for the representation of different sensory inputs but also for their integration. Disruption of topographic organization has been associated with several neurodevelopmental disorders.
View Article and Find Full Text PDFOur laboratory focuses on the development of novel neuroprotective cationic peptides, such poly-arginine-18 (R18: 18-mer of l-arginine; net charge +18) and its d-enantiomer R18D in stroke and other brain injuries. In the clinical development of R18/R18D, their cationic property raises potential safety concerns on their non-specific effects to induce mast cell degranulation and hemolysis. To address this, we first utilised primary human cultured mast cells (HCMCs) to examine anaphylactoid effects.
View Article and Find Full Text PDFThe poly-arginine peptides R18D and R18 represent novel potential neuroprotective treatments for acute ischaemic stroke. Here we examined whether R18D and R18 had any significant effects on the thrombolytic activity of alteplase (tPA) and tenecteplase (TNK) on clots formed from whole blood in an in vitro thrombolysis plate assay. R18D and R18 were examined at concentrations of 0.
View Article and Find Full Text PDFA substantial body of evidence indicates cationic, arginine-rich peptides (CARPs) are effective therapeutic compounds for a range of neurodegenerative pathologies, with beneficial effects including the reduction of excitotoxic cell death and mitochondrial dysfunction. CARPs, therefore, represent an emergent class of promising neurotherapeutics with multimodal mechanisms of action. Arginine itself is a known chaotrope, able to prevent misfolding and aggregation of proteins.
View Article and Find Full Text PDFSignal Transduct Target Ther
February 2021
As the crucial powerhouse for cell metabolism and tissue survival, the mitochondrion frequently undergoes morphological or positional changes when responding to various stresses and energy demands. In addition to intracellular changes, mitochondria can also be transferred intercellularly. Besides restoring stressed cells and damaged tissues due to mitochondrial dysfunction, the intercellular mitochondrial transfer also occurs under physiological conditions.
View Article and Find Full Text PDFPoly-arginine peptides R18 and R18D have previously been demonstrated to be neuroprotective in ischaemic stroke models. Here we examined the proteolytic stability and efficacy of R18 and R18D in reducing infarct core growth and preserving the ischaemic penumbra following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. R18 (300 or 1000 nmol/kg), R18D (300 nmol/kg) or saline were administered intravenously 10 min after MCAO induced using a filament.
View Article and Find Full Text PDFCationic arginine-rich peptides represent a novel class of peptides being developed as neuroprotective agents for stroke and other acute and chronic neurological disorders. As a group, cationic arginine-rich peptides have a diverse range of other biological properties including the ability to traverse cell membranes, modulate immune responses, antagonise ion channel receptor function, as well as possessing cardioprotective, anti-nociceptive, anti-microbial and anti-cancer properties. A sound understanding of their safety profile is essential for the design of future clinical trials and for ensuring translational success with these compounds.
View Article and Find Full Text PDFRecent studies have highlighted that a novel class of neuroprotective peptide, known as cationic arginine-rich peptides (CARPs), have intrinsic neuroprotective properties and are particularly effective anti-excitotoxic agents. As such, the present study investigated the mechanisms underlying the anti-excitotoxic properties of CARPs, using poly-arginine-18 (R18; 18-mer of arginine) as a representative peptide. Cortical neuronal cultures subjected to glutamic acid excitotoxicity were used to assess the effects of R18 on ionotropic glutamate receptor (iGluR)-mediated intracellular calcium influx, and its ability to reduce neuronal injury from raised intracellular calcium levels after inhibition of endoplasmic reticulum calcium uptake by thapsigargin.
View Article and Find Full Text PDFBackground: Despite extensive studies, there are still no clinically available neuroprotective treatments for traumatic brain injury.
Objectives: In previous studies we demonstrated beneficial treatment effects of polyarginine peptides R18 (18-mer of arginine; 300 nmol/kg) and R18D (18-mer of D-arginine; 1000 nmol/kg) in a rat model of impact-acceleration closed-head injury.
Methods: We examined the efficacy of R18D when intravenously administered at a low (100 nmol/kg) and high (1000 nmol/kg) dose, 30 minutes after a closed-head injury in male Sprague-Dawley rats.
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions.
View Article and Find Full Text PDFThrombolytic therapy with recombinant tissue plasminogen activator (rtPA) in ischaemic stroke has been associated with neurotoxicity, blood brain barrier (BBB) disruption and intra-cerebral hemorrhage. To examine rtPA cellular toxicity we investigated the effects of rtPA on cell viability in neuronal, astrocyte and brain endothelial cell (bEnd.3) cultures with and without prior exposure to oxygen-glucose deprivation (OGD).
View Article and Find Full Text PDFPoly-arginine peptide-18 (R18) is neuroprotective in different rodent middle cerebral artery occlusion (MCAO) stroke models. In this study, we examined whether R18 treatment could reduce ischemic brain injury and improve functional outcome in a nonhuman primate (NHP) stroke model. A stroke was induced in male cynomolgus macaques by MCAO distal to the orbitofrontal branch of the MCA through a right pterional craniotomy, using a 5-mm titanium aneurysm clip for 90 min.
View Article and Find Full Text PDFBackground: Cationic arginine-rich peptides (CARPs) have demonstrated neuroprotective and/or behavioural efficacy in ischemic and hemorrhagic stroke and traumatic brain injury models. Therefore, in this study we investigated the safety and neuroprotective efficacy of the CARPs poly-arginine-18 (R18; 18-mer of arginine) and its D-enantiomer R18D given in the acute bleeding phase in an intracerebral hemorrhage (ICH) model.
Methods: One hundred and fifty-eight male Sprague-Dawley rats received collagenase-induced ICH.
We have previously demonstrated that Cationic Arginine-Rich Peptides (CARPs) and in particular poly-arginine-18 (R18; 18-mer of arginine) exhibit potent neuroprotective properties in both in vitro and in vivo neuronal injury models. Based on the current literature, there is a consensus that arginine residues by virtue of their positive charge and guanidinium head group is the critical element for imparting CARP neuroprotective properties and their ability to traverse cell membranes. This study examined the importance of guanidinium head groups in R18 for peptide cellular uptake, localization, and neuroprotection.
View Article and Find Full Text PDFGlioblastoma (GBM) are lethal primary brain tumours whose pathogenesis is aided, at least partly, via a pro-tumorigenic microenvironment. This study investigated whether microglia, a cell component of the GBM microenvironment, mediates pro-tumorigenic properties via the action of cyclophilin A (CypA), a potent secretable chemokine and cytoprotectant that signals via the cell surface receptor, CD147. To this end, intracellular and secreted CypA expression was assessed in human primary microglia and BV2 microglial cells treated with the endotoxin, lipopolysaccharide (LPS) and the oxidative stress inducer, LY83583.
View Article and Find Full Text PDFPoly-arginine peptide-18 (R18) has recently emerged as a highly effective neuroprotective agent in experimental stroke models, and is particularly efficacious in protecting cortical neurons against glutamic acid excitotoxicity. While we have previously demonstrated that R18 can reduce excitotoxicity-induced neuronal calcium influx, other molecular events associated with R18 neuroprotection are yet to investigated. Therefore, in this study we were particularly interested in protein expression changes in R18 treated neurons subjected to excitotoxicity.
View Article and Find Full Text PDFBone, the major structural scaffold of the human body, has recently been demonstrated to interact with several other organ systems through the actions of bone-derived cells and bone-derived cell secretory proteins. Interestingly, the brain is one organ that appears to fall into this interconnected network. Furthermore, the fact that osteoporosis and Alzheimer's disease are two common age-related disorders raises the possibility that these two organ systems are interconnected in terms of disease pathogenesis.
View Article and Find Full Text PDFWe have previously demonstrated that R18 and its d-enantiomer, R18D, are neuroprotective at 24 hours following intraluminal filament occlusion of the middle cerebral artery (MCAO) in the rat. This study examined R18 and R18D effectiveness in improving functional outcomes at up to 56 days poststroke following endothelin-1-induced MCAO. Peptides were administered intravenously at doses of 100, 300, or 1000 nmol/kg, 60 minutes after MCAO.
View Article and Find Full Text PDFStroke is the second leading cause of death globally and represents a major cause of devastating long-term disability. Despite sustained efforts to develop clinically effective neuroprotective therapies, presently there is no clinically available neuroprotective agent for stroke. As a central mediator of neurodamaging events in stroke, mitochondria are recognised as a critical neuroprotective target, and as such, provide a focus for developing mitochondrial-targeted therapeutics.
View Article and Find Full Text PDFHypoxic-ischaemic encephalopathy (HIE) remains the leading cause of mortality and morbidity in neonates, with no available neuroprotective therapeutic agent. In the development of a therapeutic for HIE, we examined the neuroprotective efficacy of the poly-arginine peptide R18D (arginine 18 mer synthesised with D-arginine) in a perinatal model of hypoxia-ischaemia (HI; common carotid and external carotid occlusion + 8%O /92%N for 2.5 hr) in the P7 Sprague-Dawley rat.
View Article and Find Full Text PDFPerinatal hypoxic-ischemic encephalopathy (HIE) is the leading cause of mortality and morbidity in neonates, with survivors suffering significant neurological sequelae including cerebral palsy, epilepsy, intellectual disability and autism spectrum disorders. While hypothermia is used clinically to reduce neurological injury following HIE, it is only used for term infants (>36 weeks gestation) in tertiary hospitals and improves outcomes in only 30% of patients. For these reasons, a more effective and easily administrable pharmacological therapeutic agent, that can be used in combination with hypothermia or alone when hypothermia cannot be applied, is urgently needed to treat pre-term (≤36 weeks gestation) and term infants suffering HIE.
View Article and Find Full Text PDF