Intrahepatic cholangiocarcinoma (iCCA) is recognized worldwide as the second leading cause of morbidity and mortality among primary liver cancers, showing a continuously increasing incidence rate in recent years. iCCA aggressiveness is revealed through its rapid and silent intrahepatic expansion and spread through the lymphatic system leading to late diagnosis and poor prognoses. Multi-omics studies have aggregated information derived from single-omics data, providing a more comprehensive understanding of the phenomena being studied.
View Article and Find Full Text PDFPersistent organic pollutants (POPs), which encompass pesticides and industrial chemicals widely utilized across the globe, pose a covert threat to human health. β-hexachlorocyclohexane (β-HCH) is an organochlorine pesticide with striking stability, still illegally dumped in many countries, and recognized as responsible for several pathogenetic mechanisms. This study represents a pioneering exploration into the neurotoxic effects induced by the exposure to β-HCH specifically targeting neuronal cells (N2a), microglia (BV-2), and C57BL/6 mice.
View Article and Find Full Text PDFIn intrahepatic cholangiocarcinoma (iCCA), thrombospondin 1 (THBS1) and 2 (THBS2) are soluble mediators released in the tumor microenvironment (TME) that contribute to the metastatic spreading of iCCA cells via a lymphatic network by the trans-differentiation of vascular endothelial cells to a lymphatic-like phenotype. To study the direct role of THBS1 and THBS2 on the iCCA cells, well-established epithelial (HuCCT-1) and mesenchymal (CCLP1) iCCA cell lines were subjected to recombinant human THBS1 and THBS2 (rhTHBS1, rhTHBS2) for cellular function assays. Cell growth, cell adhesion, migration, and invasion were all enhanced in both CCLP1 and HuCCT-1 cells by the treatment with either rhTHBS1 or rhTHBS2, although they showed some variability in their intensity of speeding up cellular processes.
View Article and Find Full Text PDFIntroduction: is a sibling species within the (s.l.) complex requiring marine homeothermic (mainly cetaceans) and heterothermic (crustaceans, fish, and cephalopods) organisms to complete its life cycle.
View Article and Find Full Text PDFMicroglia, the macrophage-like glial cells, behave as sentinels against exogenous pathogens invading the neural tissue. Their commitment is not only confined to the defensive function, but they also perform balancing trophic activities such as neuronal postnatal development, remodeling and pruning of synapses. Likewise, microglia-derived extracellular vesicles (EVs) can play strategic roles in maintaining a healthy brain by modulating neuronal activity and by controlling neurite outgrowth as well as innate immune response.
View Article and Find Full Text PDFC. albicans is a commensal organism present in the human microbiome of more than 60% of the healthy population. Transition from commensalism to invasive candidiasis may occur after a local or a general failure of host's immune system.
View Article and Find Full Text PDFDiabetes mellitus is one of the major risk factors for cognitive dysfunction. The pathogenesis of brain impairment caused by chronic hyperglycemia is complex and includes mitochondrial dysfunction, neuroinflammation, neurotransmitters' alteration, and vascular disease, which lead to cognitive impairment, neurodegeneration, loss of synaptic plasticity, brain aging, and dementia. Glucagon-like peptide-1 (GLP-1), a gut released hormone, is attracting attention as a possible link between metabolic and brain impairment.
View Article and Find Full Text PDFProstate cancer (PCa) is a multifactorial disease characterized by the aberrant activity of different regulatory pathways. STAT3 protein mediates some of these pathways and its activation is implicated in the modulation of several metabolic enzymes. A bioinformatic analysis indicated a STAT3 binding site in the upstream region of SHMT2 gene.
View Article and Find Full Text PDFAmyloid-treated microglia prime and sustain neuroinflammatory processes in the central nervous system activating different signalling pathways inside the cells. Since a key role for PARP-1 has been demonstrated in inflammation and in neurodegeneration, we investigated PARylated proteins in resting and in β-amyloid peptide treated BV2 microglial cells. A total of 1158 proteins were identified by mass spectrometry with 117 specifically modified in the amyloid-treated cells.
View Article and Find Full Text PDFThe primary structure of macrodontain I, a peptidase from Pseudananas macrodontes fruits, was determined using Edman's degradation. The enzyme is a non-glycosylated peptidase composed by 213 amino acids with a calculated molecular weight of 23,486.18 Da, pI value 6.
View Article and Find Full Text PDFIn the responsiveness of microglia to toxic stimuli, plasma membrane proteins play a key role. In this study we treated with a synthetic beta amyloid peptide murine microglial cells metabolically differently labelled with stable isotope amino acids (SILAC). The plasma membrane was selectively enriched by a multi-stage aqueous two-phase partition system.
View Article and Find Full Text PDFAims: In diabetes, hyperglycemia increases reactive oxygen species that induce DNA damage and poly(ADP-ribose)polymerase activation. The aim of this study is to characterize the proteomic profile and the role of poly(ADP-ribosylation) in patients with type 2 diabetes.
Methods: A proteomic platform based on 2DE and MALDI-ToF spectrometry was applied to peripheral blood mononuclear cells obtained from two different cohorts in which diabetic (n = 14) and normoglycemic patients (n = 11) were enrolled.
Protease-activated receptor-1 (PAR1) is the prototypic member of a family of four G-protein-coupled receptors that signal in response to extracellular proteases. In the peripheral nervous system, the expression and/or the role of PARs are still poorly investigated. High PAR1 mRNA expression was found in the rat dorsal root ganglia and the signal intensity of PAR1 mRNA increased in response to sciatic nerve transection.
View Article and Find Full Text PDFAmyloid-beta peptide accumulation in the brain is one of the main hallmarks of Alzheimer's disease. The amyloid aggregation process is associated with the generation of free radical species responsible for mitochondrial impairment and DNA damage that in turn activates poly(ADP-ribose)polymerase 1 (PARP-1). PARP-1 catalyzes the poly(ADP-ribosylation), a post-translational modification of proteins, cleaving the substrate NAD+ and transferring the ADP-ribose moieties to the enzyme itself or to an acceptor protein to form branched polymers of ADP-ribose.
View Article and Find Full Text PDFBiochim Biophys Acta
November 2016
The cytosolic and mitochondrial isoforms of serine hydroxymethyltransferase (SHMT1 and SHMT2, respectively) are well-recognized targets of cancer research, since their activity is critical for purine and pyrimidine biosynthesis and because of their prominent role in the metabolic reprogramming of cancer cells. Here we show that 3-bromopyruvate (3BP), a potent novel anti-tumour agent believed to function primarily by blocking energy metabolism, differentially inactivates human SHMT1 and SHMT2. SHMT1 is completely inhibited by 3BP, whereas SHMT2 retains a significant fraction of activity.
View Article and Find Full Text PDFChronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM.
View Article and Find Full Text PDFMicroglia are resident macrophages in the central nervous system, whose participation against exogenous injuries and infections is mainly marked by an immediate release of inflammatory cytokines along with a toxic efflux of superoxide radicals. Indeed, many lines of evidence indicate that persistent activation of these cells turns their neuroprotective phenotype into a neurotoxic one, which contributes to destroy neuronal activity and induces neuronal loss in several neurodegeneration processes, such as Alzheimer's disease. In this study we attempted to fill-in the gap in our knowledge about redox regulation of amyloid activated microglia.
View Article and Find Full Text PDFMicroglia are macrophages within the central nervous system playing a central role in neurodegenerative disorders. Although the initial engagement of microglia seems to be neuroprotective, many lines of evidence indicate that its persistent activation contributes to dismantle neuronal activity and to induce neuronal loss. The molecular pathways that lead from amyloid interaction with membrane receptors to the microglial activation have been extensively investigated, although a definitive picture is not yet at hand.
View Article and Find Full Text PDFCreutzfeldt-Jakob disease (CJD) is a neurodegenerative disorder characterized by the deposition of the pathological conformer (PrP(CJD)) of the host encoded cellular prion protein (PrP(C)). In genetic CJD associated with V210I or R208H PrP substitutions, the pathogenic role of mutant residues is still poorly understood. To understand how V210I or R208H PrP mutations facilitate the development of the disease, we determined by mass spectrometry the quantitative ratio of mutant/wild-type PrP(CJD) allotypes in brains from affected subjects.
View Article and Find Full Text PDFCurrently available therapies for candidiasis are based on antifungal drugs belonging to azole and echinocandin families that interfere with different aspects of fungal metabolism. These drugs, beyond their specific effects, elicit also a cellular stress including an unbalance of redox state that is counteracted not only utilizing antioxidant species but also increasing the outcome export by transporters to detoxify the internal environment. These cellular actions are both based on the cytosolic concentration of reduced glutathione (GSH).
View Article and Find Full Text PDFCandida albicans cell wall constitutes a sensitive boundary that undergoes molecular changes upon environmental injuries. Antimycotics exert an intense action on cell wall eliciting both qualitative and quantitative changes of resident proteins. The emergence of drug resistance is marked by a modulation of cell wall proteomic profile.
View Article and Find Full Text PDFAmyloid beta peptide (Aβ) causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose) polymerase (PARP-1). To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25-35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25-35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050.
View Article and Find Full Text PDFIt was recently discovered that glycine consumption is strongly related to the rate of proliferation across cancer cells. This is very intriguing and raises the question of what is the actual role of this amino acid in cancer metabolism. Cancer cells are greedy for glycine.
View Article and Find Full Text PDFThe pathological form of prion protein (PrP(Sc)), as other amyloidogenic proteins, causes a marked increase of membrane permeability. PrP(Sc) extracted from infected Syrian hamster brains induces a considerable change in membrane ionic conductance, although the contribution of this interaction to the molecular mechanism of neurodegeneration process is still controversial. We previously showed that the human PrP fragment 90-231 (hPrP₉₀₋₂₃₁) increases ionic conductance across artificial lipid bilayer, in a calcium-dependent manner, producing an alteration similar to that observed for PrP(Sc).
View Article and Find Full Text PDFMicroglia-mediated inflammation in the central nervous system is a hallmark of the pathogenesis of several neurodegenerative diseases including Alzheimer's disease. Microglial cells activation follows the deposition of amyloid β fibrils and it is generally considered a triggering factor in the early steps of the onset of Alzheimer's disease. Although the initial engagement of microglia seems to play a neuroprotective role, many lines of evidence indicate that a persistent activation with the production of proinflammatory molecules contributes to dismantle neuronal activity and to induce neuronal loss occurring in neurodegenerative diseases.
View Article and Find Full Text PDF