High aspect-ratio gold nanostructures sustain Fabry-Perot-like surface plasmon responses from infrared to visible light energies. We show that some resonances can be tuned by means of laser irradiation, where low energy modes stay unperturbed. After laser irradiation, gold nanowires' tips are transformed into nanoparticles of various sizes joint to gold nanowires, producing high aspect-ratio half-dumbbells and dumbbells structures.
View Article and Find Full Text PDFQuantum confinement of the charge carriers of graphene is an effective way to engineer its properties. This is commonly realized through physical edges that are associated with the deterioration of mobility and strong suppression of plasmon resonances. Here, we demonstrate a simple, large-area, edge-free nanostructuring technique, based on amplifying random nanoscale structural corrugations to a level where they efficiently confine charge carriers, without inducing significant inter-valley scattering.
View Article and Find Full Text PDFOptical second harmonic generation (SHG) from nanostructured graphene has been studied in the framework of classical electromagnetism using a surface integral equation method. Single disks and dimers are considered, demonstrating that the nonlinear conversion is enhanced when a localized surface plasmon resonance is excited at either the fundamental or second harmonic frequency. The proposed approach, beyond the electric dipole approximation used in the quantum description, reveals that SHG from graphene nanostructures with centrosymmetric shapes is possible when retardation effects and the excitation of high plasmonic modes at the second harmonic frequency are taken into account.
View Article and Find Full Text PDF