Publications by authors named "Bruno Lunelli"

The accurate gas-phase equilibrium structures on the ground-state potential energy surface of the complete series of fluorinated and chlorinated cyclobutene derivatives with C(2v) symmetry have been evaluated at DFT PBE0/6-311++G(d,p) theory level. The optimized geometries have been compared with all the available experimental data reported in the literature, as obtained by microwave spectroscopy (MW) and gas-phase electron diffraction (GED) techniques. For hexafluorocyclobutene and 1,2-dichloro-3,3',4,4'-tetrafluorocyclobut-1-ene, the results of accurate low-temperature single-crystal X-ray diffraction experiments have also been considered.

View Article and Find Full Text PDF

The structure and composition of 1,2-dimethoxy-3,3,4,4-tetrafluorocyclobut-1-ene (DMCB) have been measured by electron diffraction from the gas at a temperature of 370 K with the help of auxiliary data from molecular orbital and normal coordinate calculations, the former at several levels of theory and basis-set size, most importantly B3LYP/cc-pVTZ. The compound was found to exist primarily as a rotamer of C(s) symmetry (ca. 98%; 2sigma = 11%) with the remainder one of C(2v) symmetry; theory predicts about 88% C(s).

View Article and Find Full Text PDF

The effect of the methoxy substituent on the structure, crystal packing, and electrostatic properties of hexafluorocyclobutene (C(4)F(6)) was investigated in the solid-state with DFT-B3LYP calculations. Full geometry optimizations were done for the parent compound and its two vinyl methoxy derivatives C(4)F(5)OCH(3) and C(4)F(4)(OCH(3))(2), starting from the structures obtained by single-crystal X-ray diffraction at low temperature. A full topological analysis, followed by the calculation of several electrostatic properties, was performed on the periodic electron density using the quantum theory of atoms in molecules.

View Article and Find Full Text PDF

An accessory for introducing liquid or gaseous samples without any contamination into an evacuated cell for optical spectrometry is described. The procedure for its use is similar to that of sample injection into a gas-liquid chromatograph, no glove box or glove bag being needed. Main benefits are the wide choice of size of the samples, their recoverability, safety, and a range of optical paths allowing to measure the absorbance of strongly absorbing liquids and gases, very dilute liquid solutions, and liquefied gases under moderate pressure.

View Article and Find Full Text PDF

The biodurability of chrysotile fibers, which is related to their cytotoxicity and mutagenic responses, is strongly affected by the surface chemical adsorption of biological molecules. Natural chrysotile is a heterogeneous material in both structure and composition. The availability of synthetic stoichiometric chrysotile of constant structure and uniform morphology has allowed us to investigate its interaction with bovine serum albumin (BSA).

View Article and Find Full Text PDF