Publications by authors named "Bruno Lainer"

The conceptual merger of relay catalysis with dynamic kinetic resolution strategy is reported to enable regio- and enantioselective C(sp)-H bond arylation of aliphatic alcohols, forming enantioenriched β-aryl alcohols typically with >90 : 10 enantiomeric ratios (up to 98 : 2 er) and 36-74 % yields. The starting materials bearing neighbouring stereogenic centres can be converted to either diastereomer of the β-aryl alcohol products, with >85 : 15 diastereomeric ratios determined by the catalysts. The reactions occur under mild conditions, ensuring broad compatibility, and involve readily available aryl bromides, an inorganic base, and commercial Ru- and Pd-complexes.

View Article and Find Full Text PDF

Given that alcohol moieties are present in a great diversity of valuable fine chemicals from nature and synthesis, methods enabling their structure diversification are highly sought after. Catalysis proved to enable the development of new transformations that are beyond the inherent reactivity of alcohols. However, modifying the structure of alcohols at certain unbiased positions remains a major challenge or requires tedious multistep procedures.

View Article and Find Full Text PDF

Secondary benzylic alcohols and diarylmethanols are common structural motifs of biologically active and medicinally relevant compounds. Here we report their enantioselective synthesis by α-arylation of primary aliphatic and benzylic alcohols under sequential catalysis integrating a Ru-catalyzed hydrogen transfer oxidation and a Ru-catalyzed nucleophilic addition. The method can be applied to various alcohols and aryl nucleophiles tolerating a range of functional groups, including secondary alcohols, ketones, alkenes, esters, NH amides, tertiary amines, aryl halides, and heterocycles.

View Article and Find Full Text PDF

One-pot procedures bear the potential to rapidly build up molecular complexity without isolation and purification of consecutive intermediates. Here, we report multicatalytic protocols that convert alkenes, unsaturated aliphatic alcohols, and aryl boronic acids into secondary benzylic alcohols with high stereoselectivities (typically >95:5 er) under sequential catalysis that integrates alkene cross-metathesis, isomerization, and nucleophilic addition. Prochiral allylic alcohols can be converted to any stereoisomer of the product with high stereoselectivity (>98:2 er, >20:1 dr).

View Article and Find Full Text PDF

Nature uses catalysis as an indispensable tool to control assembly and reaction cycles in vital non-equilibrium supramolecular processes. For instance, enzymatic methionine oxidation regulates actin (dis-)assembly, and catalytic guanosine triphosphate hydrolysis is found in tubulin (dis-)assembly. Here we present a completely artificial reaction cycle which is driven by a chemical fuel that is catalytically obtained from a "pre-fuel".

View Article and Find Full Text PDF

Water soluble amphiphilic anion receptors based on urea-substituted β-cyclodextrin were synthesized via a copper(I) mediated azide-alkyne coupling reaction. The synthetic route was designed to minimize the number of operations of cyclodextrins. Stable products were obtained in 90% yield.

View Article and Find Full Text PDF