Publications by authors named "Bruno L Pereira"

Titanium (Ti) is a popular biomaterial for orthopedic implant applications due to its superior mechanical properties such as corrosion resistance and low modulus of elasticity. However, around 10% of these implants fail annually due to bacterial infection and poor osseointegration, resulting in severe pain and suffering for the patients. To improve their performance, nanoscale surface modification approaches and doping of trace elements on the surfaces can be utilized which may help in improving cell adhesion for better osseointegration while reducing bacterial infection.

View Article and Find Full Text PDF

By altering some synthesis variables, the morphology and structural properties of anodic TiOnanotube arrays (TiONTs) can be tailored to a specific application. This study aims to investigate the effect of electrolyte-containing ions from human plasma and annealing temperature on structural, morphological, and mechanical parameters of TiONTs films, targeting its potential biomedical applications. Bio-inspired TiONTs were grown from Tiand its Ti6Al4V alloy by potentiostatic anodization in the recently developed SBF-based electrolyte, maintained at 10 °C and 40 °C.

View Article and Find Full Text PDF

Chalcones (1,3-diaryl-2-propen-1-ones) are naturally occurring polyphenols with known anticancer activity against a variety of tumor cell lines, including osteosarcoma (OS). In this paper, we present the preparation and characterization of spheres (~2 mm) from polyvinyl alcohol (PVA) containing a combination of 4'-Amino-1-Naphthyl-Chalcone (D14) and doxorubicin, to act as a new polymeric dual-drug anticancer delivery. D14 is a potent inhibitor of osteosarcoma progression and, when combined with doxorubicin, presents a synergetic effect; hence, physically crosslinked PVA spheres loaded with D14 and doxorubicin were prepared using liquid nitrogen and six freeze-thawing cycles.

View Article and Find Full Text PDF

Microfibrillated cellulose as a reinforcement agent has been investigated extensively due to their unique characteristics, which can reorder the structure of polymers and hydrogels leading to improved mechanical properties with minimal disadvantages in terms of the targeted original applications. However, effect of using a macro- to a micro-fibrillated cellulose onto polyvinyl alcohol hydrogels is still unknown, because of the unique ability for both to be produced as hydrogels from freeze-thawing mechanisms - hydrogen bonding - there is a potential synergism. Therefore, macro and microfibrillated kraft bleached paper was synthesised at various concentrations on polyvinyl alcohol hydrogels.

View Article and Find Full Text PDF

Niobium plates were electrochemically treated by Plasma Electrolytic Oxidation (PEO) with electrolytes containing phosphorous and/or calcium. Three different electrolyte and experimental parameters were used forming three different surfaces. Film morphology, thickness, and chemical composition were analyzed by scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS).

View Article and Find Full Text PDF

Plasma electrolytic oxidation (PEO) of niobium plates were done electrochemically in two steps with electrolytes containing phosphorous and calcium being observed the formation of crystalline apatite. All samples were submitted to a first step of PEO using an electrolyte containing phosphate ions. The second oxidization step was made using three different electrolytes.

View Article and Find Full Text PDF