Publications by authors named "Bruno Jakobi"

This work presents an automatic extruder as a research experience for undergraduate students. The system offers a user-friendly approach to preparing vesicles, such as liposomes or polymersomes, with a defined size and polydispersity-properties crucial for research in biology and macromolecules. It comprises two syringe pumps connected by a membrane filter.

View Article and Find Full Text PDF

Segmental dynamics of specifically labeled poly(propylene oxide), PPO, based bottlebrush polymers, PNB--PPO, were studied using quasi-elastic neutron scattering. The focus was set to different parts of the side chains to investigate the hypothetical gradual relaxation behavior within the side chains of a bottlebrush polymer. Different sections of the side chains were highlighted for QENS via sequential polymerization of protonated and deuterated monomers to allow the study of the relaxation behavior of the inner and outer parts of the side chain separately.

View Article and Find Full Text PDF

Alternating or sequence defined polymers attract the attention of an increasing number of researchers recently. Due to their different blocks, they are very customizable and material properties can be tuned. In this publication, we present dynamical studies with focus on polymer dynamics, investigated by rheology and fast field cycling (FFC) NMR.

View Article and Find Full Text PDF

The segmental dynamics of bottlebrush polymers with a stiff backbone and flexible side chains has been studied. The segmental relaxation time of side chains attached to a flexible backbone follows the same trend as linear polymers, an increase with the increasing molecular weight, but is slowed down compared to their linear counterparts. Theoretical work predicts a reversal of the molecular weight dependence of the relaxation time for stiff backbones.

View Article and Find Full Text PDF

The dynamical behavior of sequence defined polymers, P(CEG), was studied using dielectric spectroscopy showing one segmental relaxation in addition to a secondary relaxation. In case of segmental relaxation, the relaxation times strongly depend on the molecular weight at low temperatures, while at higher temperatures, unlike to linear homo polymers, this effect levels out. With increasing length of C-units, the segmental relaxation accelerates.

View Article and Find Full Text PDF

Dielectric spectroscopy measures the dynamics of polymer melts over a broad frequency range. Developing a theory for the spectral shape can extend the analysis of dielectric spectra beyond determining relaxation times from the peak maxima and adds physical meaning to shape parameters determined with empirical fit functions. Toward this goal, we use the experimental results on unentangled poly(isoprene), and unentangled poly(butylene oxide), polymer melts, to test whether the concept of end blocks could be one reason for the Rouse model deviating from experimental data.

View Article and Find Full Text PDF

Dielectric spectroscopy is extremely powerful to study molecular dynamics, because of the very broad frequency range. Often multiple processes superimpose resulting in spectra that expand over several orders of magnitude, with some of the contributions partially hidden. For illustration, we selected two examples, (i) normal mode of high molar mass polymers partially hidden by conductivity and polarization and (ii) contour length fluctuations partially hidden by reptation using the well-studied polyisoprene melts as example.

View Article and Find Full Text PDF

The segmental dynamics of the side chains of poly(norbornene)-g-poly(propylene oxide) (PNB-g-PPO) bottlebrush polymer in comparison to PPO is studied by quasi-elastic neutron scattering. Having experimental time and length scale information simultaneously allows to extract spatial information in addition to relaxation time. Tethering one end of the PPO side chain onto a stiff PNB backbone slows down the segmental relaxation, over the length and time scales investigated.

View Article and Find Full Text PDF

The understanding of materials requires access to the dynamics over many orders of magnitude in time; however, single analytical techniques are restricted in their respective time ranges. Assuming a functional relationship between time and temperature is one viable tool to overcome these limits. Despite its frequent usage, a breakdown of this assertion at the glass-transition temperature is common.

View Article and Find Full Text PDF

Different polymer architectures behave differently regarding their dynamics. We have used a combination of dielectric spectroscopy, and fast field cycling nuclear magnetic resonance (NMR) to compare the dynamical behavior of two different polymer architectures, with similar overall molecular weight. The systems of interest are a bottlebrush polymer and a linear one, both based on poly(dimethylsiloxane) (PDMS).

View Article and Find Full Text PDF

We have studied the short-time dynamical behavior of polydimethylsiloxane (PDMS) bottlebrush polymers, PDMS--PDMS. The samples have similar backbone lengths but different side-chain lengths, resulting in a shape transition. Quasi-elastic neutron scattering was used to observe the dynamical changes inherent to these structural changes.

View Article and Find Full Text PDF