Publications by authors named "Bruno J Santacreu"

Aims/hypothesis: Wolfram syndrome is a rare autosomal recessive disorder caused by pathogenic variants in the WFS1 gene. It is characterised by insulin-dependent diabetes mellitus, optic nerve atrophy, diabetes insipidus, hearing loss and neurodegeneration. Considering the unmet treatment need for this orphan disease, this study aimed to evaluate the therapeutic potential of glucagon-like peptide 1 receptor (GLP-1R) agonists under wolframin (WFS1) deficiency with a particular focus on human beta cells and neurons.

View Article and Find Full Text PDF

Epithelial renal cells have the ability to adopt different cellular phenotypes through epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET). These processes are increasingly recognized as important repair factors following acute renal tubular injury. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid with impact on proliferation, growth, migration, and differentiation which has significant implication in various diseases including cancer and kidney fibrosis.

View Article and Find Full Text PDF

The renal collecting ducts (CD) are formed by a fully differentiated epithelium, and their tissue organization and function require the presence of mature cell adhesion structures. In certain circumstances, the cells can undergo de-differentiation by a process called epithelial-mesenchymal transition (EMT), in which the cells lose their epithelial phenotype and acquire the characteristics of the mesenchymal cells, which includes loss of cell-cell adhesion. We have previously shown that in renal papillary CD cells, cell adhesion structures are located in sphingomyelin (SM)-enriched plasma membrane microdomains and the inhibition of SM synthase 1 activity induced CD cells to undergo an EMT process.

View Article and Find Full Text PDF
Article Synopsis
  • * Our research identified the protein phosphatase 1 alpha isoform (PP1 alpha) as the key phosphatase mediating this process, suggested through a detailed analysis of protein interactions linked to phosphoproteins involved with ceramide.
  • * Further experiments revealed that dephosphorylating certain proteins, ezrin and Scrib, boosts cell migration, hinting at a mechanism where low doses of doxorubicin disrupt cyt
View Article and Find Full Text PDF

Collecting duct cells are physiologically subject to the hypertonic environment of the kidney. This condition is necessary for kidney maturation and function but represents a stress condition that requires active strategies to ensure epithelial integrity. Madin-Darby Canine Kidney (MDCK) cells develop the differentiated phenotype of collecting duct cells when subject to hypertonicity, serving as a model to study epithelial preservation and homeostasis in this particular environment.

View Article and Find Full Text PDF

Chemotherapy has been reported to upregulate sphingomylinases and increase cellular ceramide, often linked to the induction to cell death. In this work, we show that sublethal doses of doxorubicin and vorinostat still increased cellular ceramide, which was located predominantly at the plasma membrane. To interrogate possible functions of this specific pool of ceramide, we used recombinant enzymes to mimic physiological levels of ceramide at the plasma membrane upon chemotherapy treatment.

View Article and Find Full Text PDF

Sphingolipids regulate several aspects of cell behavior and it has been demonstrated that cells adjust their sphingolipid metabolism in response to metabolic needs. Particularly, sphingosine-1-phosphate (S1P), a final product of sphingolipid metabolism, is a potent bioactive lipid involved in the regulation of various cellular processes, including cell proliferation, cell migration, actin cytoskeletal reorganization and cell adhesion. In previous work in rat renal papillae, we showed that sphingosine kinase (SK) expression and S1P levels are developmentally regulated and control de novo sphingolipid synthesis.

View Article and Find Full Text PDF

It is known that bradykinin (BK) B2 receptor (B2R) is expressed in the collecting duct (CD) cells of the newborn rat kidney, but little is known about its role during early postnatal life. Therefore, we hypothesize that BK could participate in the mechanisms that mediate CD formation during the postnatal renal development. Performing primary cultures, combined with biochemical, immunocytochemical, and time-lapse analysis, we studied the role of BK in CD cell behavior isolated from renal papilla of neonatal rats.

View Article and Find Full Text PDF

Ceramides (Cers) and complex sphingolipids with defined acyl chain lengths play important roles in numerous cell processes. Six Cer synthase (CerS) isoenzymes (CerS1-6) are the key enzymes responsible for the production of the diversity of molecular species. In this study, we investigated the changes in sphingolipid metabolism during the differentiation of Madin-Darby canine kidney (MDCK) cells.

View Article and Find Full Text PDF

Phosphatidylcholine (PC) is the main constituent of mammalian cell membranes. Consequently, preservation of membrane PC content and composition - PC homeostasis - is crucial to maintain cellular life. PC biosynthetic pathway is generally controlled by CTP:phosphocholine cytidylyltransferase (CCT), which is considered the rate-limiting enzyme.

View Article and Find Full Text PDF

Sphingolipids (SLs) are relevant lipid components of eukaryotic cells. Besides regulating various cellular processes, SLs provide the structural framework for plasma membrane organization. Particularly, SM is associated with detergent-resistant microdomains.

View Article and Find Full Text PDF