Publications by authors named "Bruno Horta"

Chalcones are synthetic and naturally occurring compounds that have been widely investigated as anticancer agents. In this work, the effect of chalcones - against the metabolic viability of cervical (HeLa) and prostate (PC-3 and LNCaP) tumor cell lines was tested, to compare the activity against solid and liquid tumor cells. Their effect was also evaluated on the Jurkat cell line.

View Article and Find Full Text PDF

In the context of classical molecular simulations, the accuracy of a force field is highly influenced by the values of the relevant simulation parameters. In this work, a parameter-space mapping (PSM) workflow is proposed to aid in the calibration of force-field parameters, based mainly on the following features: (i) regular-grid discretization of the search space; (ii) partial sampling of the search-space grid; (iii) training of surrogate models to predict the estimates of the target properties for nonsampled parameter sets; (iv) interpretation of the results in terms of multiobjective optimization concepts; (v) attenuation of statistical errors achieved via empiric extension of the duration of the simulations; (vi) iterative search-space translation according to a user-defined scalar objective function that measures the accuracy of the force field (e.g.

View Article and Find Full Text PDF

The level of accuracy that can be achieved by a force field is influenced by choices made in the interaction-function representation and in the relevant simulation parameters. These choices, referred to here as functional-form variants (FFVs), include for example the model resolution, the charge-derivation procedure, the van der Waals combination rules, the cutoff distance, and the treatment of the long-range interactions. Ideally, assessing the effect of a given FFV on the intrinsic accuracy of the force-field representation requires that only the specific FFV is changed and that this change is performed at an optimal level of parametrization, a requirement that may prove extremely challenging to achieve in practice.

View Article and Find Full Text PDF

The calibration of torsional interaction terms by fitting relative gas-phase conformational energies against their quantum-mechanical values is a common procedure in force-field development. However, much less attention has been paid to the optimization of third-neighbor nonbonded interaction parameters, despite their strong coupling with the torsions. This article introduces an algorithm termed LLS-SC, aimed at simultaneously parametrizing torsional and third-neighbor interaction terms based on relative conformational energies.

View Article and Find Full Text PDF

Amine transaminases (ATAs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the transfer of an amino group from an amino donor to an aldehyde and/or ketone. In the past decade, the enzymatic reductive amination of prochiral ketones catalyzed by ATAs has attracted the attention of researchers, and more traditional chemical routes were replaced by enzymatic ones in industrial manufacturing. In the present work, the influence of the presence of an α,β-unsaturated system in a methylketone model substrate was investigated, using a set of five wild-type ATAs, the ()-selective from (Atr-TA) and (Mva-TA), the ()-selective from (Cvi-TA), (Rpo-TA), (Vfl-TA) and an engineered variant of (ATA-256 from Codexis).

View Article and Find Full Text PDF

Resveratrol (RSV) and omega 3 (ω), because of their biological favorable properties, have become subjects of interest for researchers in dermocosmetic and pharmaceutical industries; however, these bioactives present technological limitations that hinder their effective delivery to the target skin layer. To overcome the stability and skin permeation limitations of free bioactives, this work proposes a combined strategy involving two different lipid nanosystems (liposomes and lipid nanoparticles) that include ω in their lipid matrix. Additionaly, RSV is only encapsulated in liposomes that provid an adequate amphiphilic environment.

View Article and Find Full Text PDF

Xanthone derivatives have shown promising antitumor properties, and 1-carbaldehyde-3,4-dimethoxyxanthone () has recently emerged as a potent tumor cell growth inhibitor. In this study, its effect was evaluated (MTT viability assay) against a new panel of cancer cells, namely cervical cancer (HeLa), androgen-sensitive (LNCaP) and androgen-independent (PC-3) prostate cancer, and nonsolid tumor derived cancer (Jurkat) cell lines. The effect of xanthone on macrophage functions was also evaluated.

View Article and Find Full Text PDF

The construction of a molecular topology file is a prerequisite for any classical molecular dynamics simulation. However, the generation of such a file may be very challenging at times, especially for large supramolecules. While many tools are available to provide topologies for large proteins and other biomolecules, the scientific community researching nonbiological systems is not equally well equipped.

View Article and Find Full Text PDF

The complexation of quercetin molecules with poly(amidoamine) (PAMAM) dendrimers of generation 0-3 was studied by molecular dynamics simulations. Three main points were addressed: (i) the effect of starting from different initial structures; (ii) the performance of the 2016H66 force field (recently validated in the context of dendrimer simulations) in predicting the experimental drug(quercetin)-loading capacity of PAMAM dendrimers; and (iii) the stability of quercetin-PAMAM complexes and their interactions. Initial structures generated by different restraint protocols led to faster convergence compared to initial structures generated by randomly placing the drug molecules in the simulation box.

View Article and Find Full Text PDF

Computer simulations of molecular systems enable structure-energy-function relationships of molecular processes to be described at the sub-atomic, atomic, supra-atomic or supra-molecular level and plays an increasingly important role in chemistry, biology and physics. To interpret the results of such simulations appropriately, the degree of uncertainty and potential errors affecting the calculated properties must be considered. Uncertainty and errors arise from (1) assumptions underlying the molecular model, force field and simulation algorithms, (2) approximations implicit in the interatomic interaction function (force field), or when integrating the equations of motion, (3) the chosen values of the parameters that determine the accuracy of the approximations used, and (4) the nature of the system and the property of interest.

View Article and Find Full Text PDF

Direct optimization against experimental condensed-phase properties concerning small organic molecules still represents the most reliable way to calibrate the empirical parameters of a force field. However, compared to a corresponding calibration against quantum-mechanical (QM) calculations concerning isolated molecules, this approach is typically very tedious and time-consuming. The present article describes an integrated scheme for the automated refinement of force-field parameters against experimental condensed-phase data, considering entire classes of organic molecules constructed using a fragment library combinatorial isomer enumeration.

View Article and Find Full Text PDF

Experimental solvation free energies are nowadays commonly included as target properties in the validation and sometimes even in the calibration of condensed-phase force fields. However, this is often done in a nonsystematic fashion, by considering available solvation free energies involving an arbitrary collection of solutes in a limited set of solvents (e.g.

View Article and Find Full Text PDF

Alkanes are a fundamental part in empirical force fields (FF) not only due to their technological relevance, but also due to the prevalence of alkane moieties in organic molecules, e.g., compounds containing a saturated carbon chain.

View Article and Find Full Text PDF

The addition of polyethylene glycol (PEG) chains to poly(lactic--glycolic acid) (PLGA) matrices is extensively used to modulate the biodegradation, drug loading and release, mechanical properties, and chemical stability of the original system. Multiple parameters, including the molecular weight, relative concentration, polarity, and solubility, affect the physicochemical properties of the polymer blend. Here, molecular dynamics simulations with the united-atom 2016H66 force field are used to model the behavior of PLGA and PEG chains and thus predict the overall physicochemical features of the resulting blend.

View Article and Find Full Text PDF

Methylthiolation reactions are usually explored to access organosulfur compounds using methanethiol, an extremely flammable and toxic compound. Herein, methylthiomethyl esters were successfully applied as novel methylthiolation reagents in a low cost, transition-metal-free methodology. These reagents allowed the methylthiolation of a wide scope of chalcones, acyl ester derivatives and Morita-Baylis-Hillman acetates with good group tolerance, affording the methylthiolated products in moderate to excellent yields.

View Article and Find Full Text PDF

A novel methodology for the 1,1-dichlorocyclopropanation of dicarbonyl conjugated olefins was described. The developed protocol is simple and uses readily accessible starting materials, allowing the isolation of the desired adducts in moderate to excellent yields (up to 99 %). Furthermore, the reaction tolerated scale up to the gram scale; thus highlighting the synthetic potential of this transformation.

View Article and Find Full Text PDF

A systematic evaluation of the accuracy of the GROMOS-compatible 2016H66 force field in the simulation of dendrimers is performed. More specifically, the poly(amido amine) (PAMAM) and the poly(propyleneimine) (PPI) are considered because of the availability of experimental data and simulation results in the literature. A total of 36 molecular systems are simulated and the radius of gyration, asphericity, density profiles, and the self-diffusion coefficient are monitored in terms of the generation number and pH (low, medium, and high) condition.

View Article and Find Full Text PDF

The effect of different treatments of the nonbonded interactions in simulations employing the recently introduced GROMOS-compatible 2016H66 force field is evaluated based on calculations carried out with the GROMACS software. This is done considering four thermodynamic and transport properties (pure liquid density, vaporization enthalpy, surface-tension coefficient, and self-diffusion constant) of 58 organic liquids representative of the chemical groups alcohol, ether, aldehyde, ketone, carboxylic acid, ester, amine, amide, thiol, sulfide, disulfide, and aromatic compounds, also including water (SPC model). A dipalmitoylphosphatidylcholine bilayer system is considered as well.

View Article and Find Full Text PDF

The kinetics of trichloroacetic acid (TCA) decarboxylation strongly depends on the solvent in which it occurs, proceeding faster in polar aprotic solvents compared to protic solvents. In particular, the reaction is known to be fast in DMSO even at room temperature and is rather slow in water even at higher temperatures. In order to understand the role of the solvent in the kinetics of TCA decarboxylation, the present study investigates this reaction using both ab initio molecular dynamics (AIMD) simulations in explicit solvents and static electronic structure calculations with the SMD polarizable continuum model, considering DMSO and water as solvents.

View Article and Find Full Text PDF

Diseases caused by flaviviruses, such as dengue and zika, are globally recognized as major threats. During infection, a critical point in their replicative cycle is the maturation step, which occurs throughout the cellular exocytic pathway. This step is a pH-dependent process that involves the modification of the viral envelope by converting prM (pre-membrane) into M (membrane) proteins with the release of a "pr peptide".

View Article and Find Full Text PDF

A new monohydrated polymorph of dexamethasone acetate was crystallized and its crystal structure characterized. The different analytical techniques used for describing its structural and vibrational properties were: single crystal and polycrystal X-ray diffraction, solid state nuclear magnetic resonance, infrared spectroscopy. A Hirshfeld surface analysis was carried out through self-arrangement cemented by H-bonds observed in this new polymorph.

View Article and Find Full Text PDF

Polyoxyethylene glycol alkyl ether amphiphiles (CE) are important nonionic surfactants, often used for biophysical and membrane protein studies. In this work, we extensively test the GROMOS-compatible 2016H66 force field in molecular dynamics simulations involving the lamellar phase of a series of CE surfactants, namely CE, CE, CE, CE, and CE. The simulations reproduce qualitatively well the monitored structural properties and their experimental trends along the surfactant series, although some discrepancies remain, in particular in terms of the area per surfactant, the equilibrium phase of CE, and the order parameters of CE, CE, and CE.

View Article and Find Full Text PDF

Chemokine ligand 2 (CCL2), also known as monocyte chemoattractant protein 1 (MCP-1), is a chemokine that recruits immune cells to inflammatory sites by interacting with G protein-coupled receptor CCR2. The CCL2/CCR2 axis is also involved in pathological processes such as tumor growth and metastasis and hence is currently considered as an important drug target. CCL2 exists in a dynamic monomer-dimer equilibrium that is modulated by CCR2 binding.

View Article and Find Full Text PDF

Flaviviruses, such as dengue and zika viruses, are etiologic agents transmitted to humans mainly by arthropods and are of great epidemiological interest. The flavivirus capsid protein is a structural element required for the viral nucleocapsid assembly that presents the classical function of sheltering the viral genome. After decades of research, many reports have shown its different functionalities and influence over cell normal functioning.

View Article and Find Full Text PDF

Phenolic acids are a particular group of small phenolic compounds which have exhibited some anti-biofilm activity, although the link between their activity and their intrinsic pH is not clear. Therefore, the present work examined the anti-biofilm activity (inhibition of biomass and metabolic activity) of phenolic acids in relation to the environmental pH, as well as other physico-chemical properties. The results indicate that, while Escherichia coli was not inhibited by the phenolic acids, both methicillin resistant Staphylococcus aureus and methicillin resistant Staphylococcus epidermidis were susceptible to the action of all phenolic acids, with the pH playing a relevant role in the activity: a neutral pH favored MRSE inhibition, while acidic conditions favored MRSA inhibition.

View Article and Find Full Text PDF