Intestinal epithelial cells, which are instrumental in nutrient absorption, fluid regulation, and pathogen defense, undergo continuous proliferation and differentiation within the intestinal crypts, migrating towards the luminal surface where they are eventually shed. RAB GTPases are key regulators of intracellular vesicular trafficking and are involved in various cellular processes, including cell migration and polarity. Here, we investigated the role of RAB6 in the development and maintenance of the gut epithelium.
View Article and Find Full Text PDFIntracellular organelles support cellular physiology in diverse conditions. In the skin, epidermal keratinocytes undergo differentiation with gradual changes in cellular physiology, accompanying remodeling of lysosomes and the Golgi apparatus. However, it was not known whether changes in Golgi and lysosome morphology and their redistribution were linked.
View Article and Find Full Text PDFAmphiphysin 2 (BIN1) is a membrane and actin remodeling protein mutated in congenital and adult centronuclear myopathies. Here, we report an unexpected function of this N-BAR domain protein BIN1 in filopodia formation. We demonstrated that BIN1 expression is necessary and sufficient to induce filopodia formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2023
Lysosomal exocytosis is involved in many key cellular processes but its spatiotemporal regulation is poorly known. Using total internal reflection fluorescence microscopy (TIRFM) and spatial statistics, we observed that lysosomal exocytosis is not random at the adhesive part of the plasma membrane of RPE1 cells but clustered at different scales. Although the rate of exocytosis is regulated by the actin cytoskeleton, neither interfering with actin or microtubule dynamics by drug treatments alters its spatial organization.
View Article and Find Full Text PDFLysosomes orchestrate degradation and recycling of exogenous and endogenous material thus controlling cellular homeostasis. Little is known how this organelle changes during cancer. Here we investigate the intracellular landscape of lysosomes in a cellular model of bladder cancer.
View Article and Find Full Text PDFRadial glial (RG) cells are the neural stem cells of the developing neocortex. Apical RG (aRG) cells can delaminate to generate basal RG (bRG) cells, a cell type associated with human brain expansion. Here, we report that aRG delamination is regulated by the post-Golgi secretory pathway.
View Article and Find Full Text PDFThis article illustrates the main stages of the scientific career of Dr Andrée Tixier-Vidal, a pioneer in cell biology research in France. She made important discoveries in the field of hormone secretion and neuronal morphogenesis. She played a key role in developing pituitary and neuronal cultures and using electron microscopy to study cellular structures.
View Article and Find Full Text PDFIn the early secretory pathway, the delivery of anterograde cargoes from the endoplasmic reticulum (ER) exit sites (ERES) to the Golgi apparatus is a multi-step transport process occurring via the ER-Golgi intermediate compartment (IC, also called ERGIC). While the role microtubules in ER-to-Golgi transport has been well established, how the actin cytoskeleton contributes to this process remains poorly understood. Here, we report that Arp2/3 inhibition affects the network of acetylated microtubules around the Golgi and induces the accumulation of unusually long RAB1/GM130-positive carriers around the centrosome.
View Article and Find Full Text PDFRAB6 GTPase is the most abundant Golgi-associated RAB protein and regulates several transport steps at the level of this organelle. Homozygous Rab6a knockout (k/o) is embryonic lethal in mouse. To study RAB6 function in cell lineages and tissues, we thus generated various conditional Rab6a knockout (k/o) mice using the Cre/lox system.
View Article and Find Full Text PDFCells tend to soften during cancer progression, suggesting that mechanical phenotyping could be used as a diagnostic or prognostic method. Here we investigate the cell mechanics of gliomas, brain tumors that originate from glial cells or glial progenitors. Using two microrheology techniques, a single-cell parallel plates rheometer to probe whole-cell mechanics and optical tweezers to probe intracellular rheology, we show that cell mechanics discriminates human glioma cells of different grades.
View Article and Find Full Text PDFBackground Information: Comprehensive libraries of plasmids for SARS-CoV-2 proteins with various tags (e.g., Strep, HA, Turbo) are now available.
View Article and Find Full Text PDFThe Golgi-associated RAB GTPases, RAB6A and RAB6A', regulate anterograde and retrograde transport pathways from and to the Golgi. , RAB6A/A' control several cellular functions including cell division, migration, adhesion and polarity. However, their role remains poorly described Here, we generated BlgCre; mice presenting a specific deletion of in the mammary luminal secretory lineage during gestation and lactation.
View Article and Find Full Text PDFChemotherapy remains one of the dominant treatments to cure cancer. However, due to the many inherent drawbacks, there is a search for new chemotherapeutic drugs. Many classes of compounds have been investigated over the years to discover new targets and synergistic mechanisms of action including multicellular targets.
View Article and Find Full Text PDFFour novel monocationic Ru(II) polypyridyl complexes were synthesized with the general formula [Ru(DIP)flv]X, where DIP is 4,7-diphenyl-1,10-phenanthroline, flv stands for the flavonoid ligand (5-hydroxyflavone in [Ru(DIP)(5-OHF)](PF), genistein in [Ru(DIP)(gen)](PF), chrysin in [Ru(DIP)(chr)](OTf), and morin in [Ru(DIP)(mor)](OTf)), and X is the counterion, PF, and OTf ̅ (triflate, CFSO̅), respectively. Following the chemical characterization of the complexes by H and C NMR, mass spectrometry, and elemental analysis, their cytotoxicity was tested against several cancer cell lines. The most promising complex, [Ru(DIP)(gen)](PF), was further investigated for its biological activity.
View Article and Find Full Text PDFThe utilization of photodynamic therapy (PDT) for the treatment of various types of cancer has gained increasing attention over the last decades. Despite the clinical success of approved photosensitizers (PSs), their application is sometimes limited due to poor water solubility, aggregation, photodegradation, and slow clearance from the body. To overcome these drawbacks, research efforts are devoted toward the development of metal complexes and especially Ru(II) polypyridine complexes based on their attractive photophysical and biological properties.
View Article and Find Full Text PDFDue to the great potential expressed by an anticancer drug candidate previously reported by our group, namely, Ru-sq ([Ru(DIP)(sq)](PF) (DIP, 4,7-diphenyl-1,10-phenanthroline; sq, semiquinonate ligand), we describe in this work a structure-activity relationship (SAR) study that involves a broader range of derivatives resulting from the coordination of different catecholate-type dioxo ligands to the same Ru(DIP) core. In more detail, we chose catechols carrying either an electron-donating group (EDG) or an electron-withdrawing group (EWG) and investigated the physicochemical and biological properties of their complexes. Several pieces of experimental evidences demonstrated that the coordination of catechols bearing EDGs led to deep-red positively charged complexes - in which the preferred oxidation state of the dioxo ligand is the uninegatively charged semiquinonate.
View Article and Find Full Text PDFCancer is one of the main causes of death worldwide. Chemotherapy, despite its severe side effects, is to date one of the leading strategies against cancer. Metal-based drugs present several potential advantages when compared to organic compounds and they have gained trust from the scientific community after the approval on the market of the drug cisplatin.
View Article and Find Full Text PDFRuthenium complexes have attracted a lot of attention as potential photosensitizers (PSs) for photodynamic therapy (PDT). However, some of these PSs are unsuitable for PDT applications due to their low cellular uptake, which is possibly the consequence of their relatively low degree of lipophilicity, which prevents them from penetrating into tumor cells. Here, we report the simple one-pot synthesis of ruthenium-containing nanoconjugates from a non-cell-penetrating, non-phototoxic ruthenium(ii) polypyridyl complex (), by a drug-initiated ring-opening polymerization of lactide through the formation of a zinc initiator.
View Article and Find Full Text PDFInorganic pyrophosphate (PPi) is considered as a diagnostic marker for various diseases such as cancer and vascular calcification. PPi also plays an important preservative role as an additive E450 in foodstuff. In this work, a selective Fe -salen-based probe for PPi is described; this probe disassembles in the presence of the target analyte into its molecular blocks, 1,2-propanediamine and 3-chloro-5-formyl-4-hydroxybenzenesulfonic acid.
View Article and Find Full Text PDFMembrane trafficking plays a crucial role in cell polarity by directing lipids and proteins to specific subcellular locations in the cell and sustaining a polarized state. The Golgi apparatus, the master organizer of membrane trafficking, can be subdivided into three layers that play different mechanical roles: a cytoskeletal layer, the so-called Golgi matrix, and the Golgi membranes. First, the outer regions of the Golgi apparatus interact with cytoskeletal elements, mainly actin and microtubules, which shape, position, and orient the organelle.
View Article and Find Full Text PDF