Publications by authors named "Bruno Gonzalez Zorn"

Article Synopsis
  • Carbapenemase-producing Enterobacterales (CPE) are multidrug-resistant bacteria that can spread their resistance genes via mobile genetic elements, complicating infection control efforts.
  • A study in Galway, Ireland involved whole-genome sequencing of CPE samples from patients and wastewater to understand the distribution and characteristics of these organisms and their resistance genes.
  • Findings revealed that most resistance genes were found on plasmids, with specific plasmid types associated with different CPE strains, highlighting the genetic mechanisms facilitating the spread of resistance between humans and the environment.
View Article and Find Full Text PDF

BackgroundAntimicrobial resistance (AMR) is a global threat. Monitoring using an integrated One Health approach is essential to detect changes in AMR occurrence.AimWe aimed to detect AMR genes in pathogenic and commensal collected 2013-2020 within monitoring programmes and research from food animals, food (fresh retail raw meat) and humans in six European countries, to compare vertical and horizontal transmission.

View Article and Find Full Text PDF

NpmA and NpmB are 16S rRNA methyltransferases that act on residue A1408 and confer high-level resistance to almost all aminoglycosides; however, these methyltransferases are rarely reported. A novel gene, npmC, was identified after analysisng all world-wide available metagenomic projects in a One Health context. This gene has a high level of similarity (91.

View Article and Find Full Text PDF

Metagenomic sequencing is a promising method that has the potential to revolutionize the world of pathogen detection and antimicrobial resistance (AMR) surveillance in food-producing environments. However, the analysis of the huge amount of data obtained requires performant bioinformatics tools and databases, with intuitive and straightforward interpretation. In this study, based on long-read metagenomics data of chicken fecal samples with a spike-in mock community, we proposed confidence levels for taxonomic identification and AMR gene detection, with interpretation guidelines, to help with the analysis of the output data generated by KMA, a popular mer read alignment tool.

View Article and Find Full Text PDF

The study assessed the impact of four equine semen processing techniques on sperm quality and microbial load immediately post-processing and after 48 h of refrigeration. The aim was to explore the potential reduction of prophylactic antibiotic usage in semen extenders. Semen from ten adult stallions was collected and processed under a strict hygiene protocol and divided into four aliquots: Simple Centrifugation with antibiotics (SC+), Simple Centrifugation (SC-), Single-Layer Colloidal Centrifugation (CC-), and Filtration (with SpermFilter) (F-), all in extenders without antibiotics.

View Article and Find Full Text PDF

During pregnancy, women have an increased relative risk of exposure to infectious diseases. This study was designed to assess the prevalence of the co-occurrence of glucose-6-phosphate dehydrogenase deficiency (G6PDd) and sickle cell trait (SCT) and the impact on anemia outcomes among pregnant women exposed to frequent infectious diseases. Over a six-year period (March 2013 to October 2019), 8473 pregnant women attending antenatal clinics (ANCs) at major referral hospitals in Northern Ghana were recruited and diagnosed for common infectious diseases (malaria, syphilis, hepatitis B, and HIV), G6PDd, and SCT.

View Article and Find Full Text PDF

is a gram-negative bacterium of relevant clinical interest. Rd KW20 was the first organism to be sequenced and for which a genome-scale metabolic model (GEM) was developed. However, current GEMs are unable to capture several aspects of metabolome nature related to metabolite pools.

View Article and Find Full Text PDF

Plasmids facilitate the vertical and horizontal spread of antimicrobial resistance genes between bacteria. The host range and adaptation of plasmids to new hosts determine their impact on the spread of resistance. In this work, we explore the mechanisms driving plasmid adaptation to novel hosts in experimental evolution.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) mechanisms, especially those conferring resistance to critically important antibiotics, are a great concern for public health. 16S rRNA methyltransferases (16S-RMTases) abolish the effectiveness of most clinically used aminoglycosides, but some of them are considered sporadic, such as RmtE. The main goals of this work were the genomic analysis of bacteria producing 16S-RMTases from a 'One Health' perspective in Venezuela, and the study of the epidemiological and evolutionary scenario of RmtE variants and their related mobile genetic elements (MGEs) worldwide.

View Article and Find Full Text PDF

Cefotaximase-Munich (CTX-M) extended-spectrum beta-lactamase (ESBL) enzymes produced by confer resistance to clinically relevant third-generation cephalosporins. CTX-M group 1 variants, CTX-M-1 and CTX-M-15, are the leading ESBL-producing associated with animal and human infection, respectively, and are an increasing antimicrobial resistance (AMR) global health concern. The and genes encoding these variants have an approximate nucleotide sequence similarity of 98.

View Article and Find Full Text PDF

Plasmid-mediated antimicrobial resistance is one of the major threats to public health worldwide. The mechanisms involved in the plasmid/host coadaptation are still poorly characterized, and their understanding is crucial to comprehend the genesis and evolution of multidrug-resistant bacteria. With this purpose, we designed an experimental evolution using Haemophilus influenzae RdKW20 as the model strain carrying the ColE1-like plasmid pB1000.

View Article and Find Full Text PDF

Wastewater has a major role in antimicrobial resistance (AMR) dynamics and public health. The impact on AMR of wastewater flux at the community-hospital interface in low- and middle-income countries (LMICs) is poorly understood. Therefore, the present study analyzed the epidemiological scenario of resistance genes, mobile genetic elements (MGEs), and bacterial populations in wastewater around the Tamale metropolitan area (Ghana).

View Article and Find Full Text PDF

The majority of antimicrobials that are produced are administered to animals, particularly food animals. While the overall impact of antimicrobial use in animals on antimicrobial resistance in humans and the environment is unclear, it undeniably has a role. Yet, some degree of antimicrobial use in animals is necessary for animal health and welfare purposes.

View Article and Find Full Text PDF

Antimicrobial resistance is one of the major threats to Public Health worldwide. Understanding the transfer and maintenance of antimicrobial resistance genes mediated by mobile genetic elements is thus urgent. In this work, we focus on the ColE1-like plasmid family, whose distinctive replication and multicopy nature has given rise to key discoveries and tools in molecular biology.

View Article and Find Full Text PDF

Plasmid conjugation is a major route for the spread of antibiotic resistance genes. Inhibiting conjugation has been proposed as a feasible strategy to stop or delay the propagation of antibiotic resistance genes. Several compounds have been shown to be conjugation inhibitors , specifically targeting the plasmid horizontal transfer machinery.

View Article and Find Full Text PDF

Food-producing animals are an important reservoir and potential source of transmission of antimicrobial resistance (AMR) to humans. However, research on AMR in turkey farms is limited. This study aimed to identify risk factors for AMR in turkey farms in three European countries (Germany, France, and Spain).

View Article and Find Full Text PDF
Article Synopsis
  • * The study isolated 627 Escherichia coli samples from poultry, swine, and veal calf herds across 6 European countries to analyze the genetic evolution of AMR and its association with virulence genes and mobile genetic elements (MGEs).
  • * Findings revealed no significant genetic clustering of E. coli based on country or markers, but confirmed that MGEs contribute to AMR gene acquisition; moreover, metagenomic sequencing was shown to effectively gauge AMR levels in E. coli isolates.
View Article and Find Full Text PDF

Aquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems.

View Article and Find Full Text PDF

Education in antimicrobial stewardship (AMS) in veterinary medicine is essential to foster responsible antimicrobial use and control of antimicrobial resistance (AMR) in animals. AMS is listed by the EU and international organizations among the basic 'Day One Competences' required of veterinary students upon graduation. Our aim was to evaluate the quality of education of European veterinary students in AMS.

View Article and Find Full Text PDF

Salmonellosis is a common subclinical infection in pigs and therefore apparently healthy animals may represent a reservoir of antibiotic-resistant Salmonella for humans. This study estimates and characterizes resistance to two classes of antimicrobials considered of the highest priority within the critically important antimicrobials for humans, i.e.

View Article and Find Full Text PDF

Objectives/purpose: The costs attributable to antimicrobial resistance (AMR) remain theoretical and largely unspecified. Current figures fail to capture the full health and economic burden caused by AMR across human, animal, and environmental health; historically many studies have considered only direct costs associated with human infection from a hospital perspective, primarily from high-income countries. The Global Antimicrobial Resistance Platform for ONE-Burden Estimates (GAP-ON€) network has developed a framework to help guide AMR costing exercises in any part of the world as a first step towards more comprehensive analyses for comparing AMR interventions at the local level as well as more harmonized analyses for quantifying the full economic burden attributable to AMR at the global level.

View Article and Find Full Text PDF

Objectives: To investigate the relevance of multicopy plasmids in antimicrobial resistance and assess their mobilization mediated by phage particles.

Methods: Several databases with complete sequences of plasmids and annotated genes were analysed. The 16S methyltransferase gene armA conferring high-level aminoglycoside resistance was used as a marker in eight different plasmids, from different incompatibility groups, and with differing sizes and plasmid copy numbers.

View Article and Find Full Text PDF

Many articles have been published on resistant microorganisms isolated from humans, animals, foods and the environment in Ghana. However, there are no reviews that summarize the information on the isolates and antibiotics tested so far in the country. This literature review was completed through "PubMed" and "Google Scholar" searches.

View Article and Find Full Text PDF

Introduction: Antibiotic misuse is the paramount factor for antibiotic resistance. Tamale Teaching Hospital (TTH), located in Ghana's Northern Region, is the biggest tertiary hospital in the Northern half of the country and consequently one of the biggest prescribers of antibiotics. Understanding the use of antibiotics in the TTH and providing information that could be inferred to develop strategies for antibiotic prescription is of extreme importance in this era of multiple and pan-resistant strains of pathogenic microorganisms.

View Article and Find Full Text PDF