For naive robots to become truly autonomous, they need a means of developing their perceptive capabilities instead of relying on hand crafted models. The sensorimotor contingency theory asserts that such a way resides in learning invariants of the sensorimotor flow. We propose a formal framework inspired by this theory for the description of sensorimotor experiences of a naive agent, extending previous related works.
View Article and Find Full Text PDFOver the last 20 years, a significant part of the research in exploratory robotics partially switches from looking for the most efficient way of exploring an unknown environment to finding what could motivate a robot to autonomously explore it. Moreover, a growing literature focuses not only on the topological description of a space (dimensions, obstacles, usable paths, etc.) but rather on more semantic components, such as multimodal objects present in it.
View Article and Find Full Text PDFIn line with the sensorimotor contingency theory, we investigate the problem of the perception of space from a fundamental sensorimotor perspective. Despite its pervasive nature in our perception of the world, the origin of the concept of space remains largely mysterious. For example in the context of artificial perception, this issue is usually circumvented by having engineers pre-define the spatial structure of the problem the agent has to face.
View Article and Find Full Text PDFIn this paper, we propose an extension of a self-organizing map called self-organizing multilayer perceptron (SOMLP) whose purpose is to achieve quantization of spaces of functions. Based on the use of multilayer perceptron networks, SOMLP comprises the unsupervised as well as supervised learning algorithms. We demonstrate that it is possible to use the commonly used vector quantization algorithms (LVQ algorithms) to build new algorithms called functional quantization algorithms (LFQ algorithms).
View Article and Find Full Text PDF