Publications by authors named "Bruno Gabriel Lucca"

Microfluidic cotton thread-based electroanalytical devices (μTEDs) are analytical systems with attractive features such as spontaneous passive flow, low cost, minimal waste production, and good sensitivity. Currently, sample injection in µTEDs is performed by hand using manual micropipettes, which have drawbacks such as inconstant speed and position, dependence of skilled analysts, and need of physical effort of operator during prolonged times, leading to poor reproducibility and risk of strain injury. As an alternative to these inconveniences, we propose, for the first time, the use of electronic micropipettes to carry out automated injections in µTEDs.

View Article and Find Full Text PDF

The development of miniaturized, sustainable and eco-friendly analytical sensors with low production cost is a current trend worldwide. Within this idea, this work presents  the innovative use of masked stereolithography (MSLA) 3D-printed substrates for the easy fabrication of pencil-drawn electrochemical sensors (MSLA-3D-PDE). The use of a non-toxic material such as pencil (electrodes) together with a biodegradable 3D printing resin (substrate) allowed the production of devices that are quite cheap (ca.

View Article and Find Full Text PDF

Nowadays, the use of pesticides in world agriculture is fundamental. However, it leads to an increase in the illegal sale and smuggling of these products in various parts of the world, mainly in Brazil. Therefore, the development of new analytical methods for screening and analysis of these kind of substances is a relevant issue.

View Article and Find Full Text PDF

The development of 3D-printed electrochemical sensors by fused deposition modeling (FDM) has been increasing exponentially in the last five years. In this context, commercial conductive filaments composed of a blend of carbon particles (, graphene or carbon black (CB)) and insulating thermoplastic polymers (, polylactic acid (PLA) or acrylonitrile butadiene styrene (ABS)) have been widely used for electrode fabrication. However, such materials may be expensive and the electrodes when used "as-printed" exhibit poor electrochemical performance as a function of the low content of conductive particles in the composition (∼10 to 20 wt%), which requires one or more post-treatment steps ( polishing, chemical, electrochemical, and photochemical) to reach good electrochemical performance.

View Article and Find Full Text PDF

A new contact stamping method for fabrication of paper-based analytical devices (PADs) is reported. It uses an all-purpose acrylic varnish and 3D-printed stamps to pattern hydrophobic structures on paper substrates. The use of 3D printing allows quickly prototyping the desired stamp shape without resorting to third-party services, which are often expensive and time consuming.

View Article and Find Full Text PDF

3D printing is a hot topic in electroanalytical chemistry, allowing the construction of custom cells and sensors at affordable prices. In this work, we describe a novel small and practical 3D-printed electrochemical cell. The cell's body, manufactured in ABS on a 3D printer, is composed by three parts easily screwed: solution vessel, stick and cover with two embedded 3D-pen-printed carbon black-polylactic acid (CB-PLA) electrodes (counter and pseudo-reference).

View Article and Find Full Text PDF

Here, a novel electrically conductive thermoplastic material composed of graphite/acrylonitrile butadiene styrene (G/ABS) is reported for the first time. This material was explored on the production of 3D printing-based electrochemical sensors with enhanced sensitivity using a novel fabrication approach. The developed G/ABS electrodes showed lower charge transfer resistance (157 vs.

View Article and Find Full Text PDF

A microfluidic thread electroanalytical device (μTED) containing an embedded electrochemical detector is presented for the first time in this work. This novel device was entirely produced in an automated way using the fused deposition modeling (FDM) 3D printing technique. The main platform was fabricated with acrylonitrile butadiene styrene (ABS) filament, while the integrated electrochemical detector was produced using a commercial conductive filament composed of carbon black and polylactic acid (CB/PLA).

View Article and Find Full Text PDF

This work describes a novel, simple and inexpensive pen-on-paper (PoP) method for patterning hydrophobic structures in paper substrates aiming the production of paper-based analytical devices (PADs). This fabrication protocol uses a commercially available plastic welding kit that can be easily acquired and is sold as a repair tool. It consists of an acrylate-based resin which is deposited on the paper and then cured using a UV led, or even the sunlight, for creation of the hydrophobic barriers.

View Article and Find Full Text PDF

In this work we propose the voltammetric analysis of contraceptive hormones ethinylestradiol (EE) and cyproterone acetate (CPA) using solid amalgam electrode fabricated with silver nanoparticles. To the best of our knowledge, this is the first report describing the simultaneous determination of these two compounds and also the first report of the use of amalgam electrode for analysis of EE and CPA. The voltammetric behavior of both substances was investigated by their reduction.

View Article and Find Full Text PDF

This paper describes the development of a novel, simple, and inexpensive electrochemical device containing an integrated and disposable three-electrode system for detection. The base of this platform consists on a PDMS structure containing microchannels which were prototyped using 3D-printed molds. Pencil graphite leads were inserted into these microchannels and utilized as working, counter and reference electrodes in a novel design.

View Article and Find Full Text PDF

The fabrication of PDMS microfluidic structures through soft lithography is widely reported. While this well-established method gives high precision microstructures and has been successfully used for many researchers, it often requires sophisticated instrumentation and expensive materials such as clean room facilities and photoresists. Thus, we present here a simple protocol that allows the rapid molding of simple linear microchannels in PDMS substrates aiming microfluidics-based applications.

View Article and Find Full Text PDF

In this work we demonstrate, for the first time, the use of inexpensive commercial pencil graphite leads as simple amperometric sensors for microchip electrophoresis. A PDMS support containing one channel was fabricated through soft lithography and sanded pencil graphite leads were inserted into this channel to be used as working electrodes. The electrochemical and morphological characterization of the sensor was carried out.

View Article and Find Full Text PDF

This paper describes a simple method for the fabrication of screen-printed based electrodes for amperometric detection on microchip electrophoresis (ME) devices. The procedure developed is quite simple and does not require expensive instrumentation or sophisticated protocols commonly employed on the production of amperometric sensors, such as photolithography or sputtering steps. The electrodes were fabricated through manual deposition of home-made conductive carbon ink over patterned acrylic substrate.

View Article and Find Full Text PDF

This report describes the development and application of a novel graphene-modified electrode to be used as amperometric sensor in microchip electrophoresis (ME) devices. The modified electrode was achieved based on electroreduction of graphene oxide on an integrated Pt working electrode of a commercial ME device. The surface modification was characterized by SEM and cyclic voltammetry techniques.

View Article and Find Full Text PDF

This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p-coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end-channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.

View Article and Find Full Text PDF