This paper starts with a brief history of the birth of the field of radioecology during the Cold War with a focus on US activity. We review the establishment of the international system for radiation protection and the science underlying the guidelines. We then discuss the famous ICRP 60 statement that if "Man" is protected, so is everything else and show how this led to a focus in radioecology on pathways to "Man" rather than concern about impacts on environments or ecosystems.
View Article and Find Full Text PDFIt is well established that cells, tissues, and organisms exposed to low doses of ionizing radiation can induce effects in non-irradiated neighbors (non-targeted effects or NTE), but the mechanisms remain unclear. This is especially true of the initial steps leading to the release of signaling molecules contained in exosomes. Voltage-gated ion channels, photon emissions, and calcium fluxes are all involved but the precise sequence of events is not yet known.
View Article and Find Full Text PDFThe era of high-throughput techniques created big data in the medical field and research disciplines. Machine intelligence (MI) approaches can overcome critical limitations on how those large-scale data sets are processed, analyzed, and interpreted. The 67 Annual Meeting of the Radiation Research Society featured a symposium on MI approaches to highlight recent advancements in the radiation sciences and their clinical applications.
View Article and Find Full Text PDFPurpose: We characterize for the first time the emission of acoustic waves from cultured cells irradiated with X-ray photon radiation.
Methods And Materials: Human cancer cell lines (MCF-7, HL-60) and control cell-free media were exposed to 1 Gy X-ray photons while recording the sound generated before, during and after irradiation using custom large-bandwidth ultrasound transducer. The effects of dose rate and cell viability were investigated.
Conjugated polymers are increasingly exploited for biomedical applications. In this work, we explored the optical characteristics of conjugated polymers of variable chemical structures at multiple levels relevant to biological interfacing, from fluorescence yield to their influence on cellular membrane potential. We systematically compared the performance of conjugated polymer as cast thin films and as nanoparticles stabilized with amphiphilic polyethylene glycol-poly lactic acid-co-glycolic acid (PEG-PLGA).
View Article and Find Full Text PDFBackground/aims: The use of novel cryo-additive agents to increase cell viability post-cryopreservation is paramount to improve future cell based-therapy treatments. We aimed to establish the Human Leukemia (HL-60) cells lipidomic and biological patterns when cryo-preserved in DMSO alone and with 300 µM Nigerose (Nig), 200 µM Salidroside (Sal) or a combination of Nig (150 µM) and Sal (100 µM).
Methods: HL-60 cells were pre-incubated with Nig/Sal prior, during and post cryopreservation, and subjected to global lipidomic analysis.
Objectives: This commentary reviews and evaluates the role of sound signals as part of the infosome of cells and organisms. Emission and receipt of sound has recently been identified as a potentially important universal signaling mechanism invoked when organisms are stressed. Recent evidence from plants, animals and microbes suggests that it could be a stimulus for specific or general molecular cellular stress responses in different contexts, and for triggering population level responses.
View Article and Find Full Text PDFFront Bioeng Biotechnol
October 2019
Optogenetics combines optics and genetics to enable minimally invasive cell-type-specific stimulation in living tissue. For the purposes of bio-implantation, there is a need to develop soft, flexible, transparent and highly biocompatible light sources. Organic semiconducting materials have key advantages over their inorganic counterparts, including low Young's moduli, high strain resistances, and wide color tunability.
View Article and Find Full Text PDFπ-Conjugated polymer nanoparticles (CPNs) are under investigation as photoluminescent agents for diagnostics and bioimaging. To determine whether the choice of surfactant can improve CPN properties and prevent protein adsorption, five nonionic polyethylene glycol alkyl ether surfactants were used to produce CPNs from three representative π-conjugated polymers. The surfactant structure did not influence size or yield, which was dependent on the nature of the conjugated polymer.
View Article and Find Full Text PDFGold is the most widely used electrode material for bioelectronic applications due to its high electrical conductivity, good chemical stability and proven biocompatibility. However, it adheres only weakly to widely used substrate materials such as glass and silicon oxide, typically requiring the use of a thin layer of chromium between the substrate and the metal to achieve adequate adhesion. Unfortunately, this approach can reduce biocompatibility relative to pure gold films due to the risk of the underlying layer of chromium becoming exposed.
View Article and Find Full Text PDF