Intense, mutually coherent beams of multiharmonic extreme ultraviolet light can now be created using seeded free-electron lasers, and the phase difference between harmonics can be tuned with attosecond accuracy. However, the absolute value of the phase is generally not determined. We present a method for determining precisely the absolute phase relationship of a fundamental wavelength and its second harmonic, as well as the amplitude ratio.
View Article and Find Full Text PDFLaser-slicing at a diffraction-limited storage ring light source in the soft X-ray region is investigated with theoretical and numerical modelling. It turns out that the slicing efficiency is favoured by the ultra-low beam emittance, and that slicing can be implemented without interference to the standard multi-bunch operation. Spatial and spectral separation of the sub-picosecond radiation pulse from a hundreds of picosecond-long background is achieved by virtue of 1:1 imaging of the radiation source.
View Article and Find Full Text PDFChirped pulse amplification in optical lasers is a revolutionary technique, which allows the generation of extremely powerful femtosecond pulses in the infrared and visible spectral ranges. Such pulses are nowadays an indispensable tool for a myriad of applications, both in fundamental and applied research. In recent years, a strong need emerged for light sources producing ultra-short and intense laser-like X-ray pulses, to be used for experiments in a variety of disciplines, ranging from physics and chemistry to biology and material sciences.
View Article and Find Full Text PDFThe advent of free-electron laser (FEL) sources delivering two synchronized pulses of different wavelengths (or colours) has made available a whole range of novel pump-probe experiments. This communication describes a major step forward using a new configuration of the FERMI FEL-seeded source to deliver two pulses with different wavelengths, each tunable independently over a broad spectral range with adjustable time delay. The FEL scheme makes use of two seed laser beams of different wavelengths and of a split radiator section to generate two extreme ultraviolet pulses from distinct portions of the same electron bunch.
View Article and Find Full Text PDF