Immune cells have been implicated in idiopathic pulmonary fibrosis (IPF), but the phenotypes and effector mechanisms of these cells remain incompletely characterized. We performed mass cytometry to quantify immune cell subsets in lungs of 12 patients with IPF and 15 organ donors without chronic lung disease and used existing single-cell RNA-sequencing data to investigate transcriptional profiles of immune cells overrepresented in IPF. Among myeloid cells, we found increased numbers of alveolar macrophages (AMØs) and dendritic cells (DCs) in IPF, as well as a subset of monocyte-derived DCs.
View Article and Find Full Text PDFER stress in type II alveolar epithelial cells (AECs) is common in idiopathic pulmonary fibrosis (IPF), but the contribution of ER stress to lung fibrosis is poorly understood. We found that mice deficient in C/EBP homologous protein (CHOP), an ER stress-regulated transcription factor, were protected from lung fibrosis and AEC apoptosis in 3 separate models where substantial ER stress was identified. In mice treated with repetitive intratracheal bleomycin, we identified localized hypoxia in type II AECs as a potential mechanism explaining ER stress.
View Article and Find Full Text PDFThe teratogenic mechanisms triggered by ZIKV are still obscure due to the lack of a suitable animal model. Here we present a mouse model of developmental disruption induced by ZIKV hematogenic infection. The model utilizes immunocompetent animals from wild-type FVB/NJ and C57BL/6J strains, providing a better analogy to the human condition than approaches involving immunodeficient, genetically modified animals, or direct ZIKV injection into the brain.
View Article and Find Full Text PDF