Publications by authors named "Bruno Curti"

Mycobacterium tuberculosis glutamyl-tRNA synthetase (Mt-GluRS), encoded by Rv2992c, was overproduced in Escherichia coli cells, and purified to homogeneity. It was found to be similar to the other well-characterized GluRS, especially the E. coli enzyme, with respect to the requirement for bound tRNA(Glu) to produce the glutamyl-AMP intermediate, and the steady-state kinetic parameters k(cat) (130 min(-1)) and K(M) for tRNA (0.

View Article and Find Full Text PDF

Glutamate synthases play with glutamine synthetase an essential role in nitrogen assimilation processes in microorganisms, plants, and lower animals by catalyzing the net synthesis of one molecule of L-glutamate from L-glutamine and 2-oxoglutarate. They exhibit a modular architecture with a common subunit or region, which is responsible for the L-glutamine-dependent glutamate synthesis from 2-oxoglutarate. Here, a PurF- (Type II- or Ntn-) type amidotransferase domain is coupled to the synthase domain, a (beta/alpha)8 barrel containing FMN and one [3Fe-4S]0,+1 cluster, through a approximately 30 angstroms-long intramolecular tunnel for the transfer of ammonia between the sites.

View Article and Find Full Text PDF

Crystal structures of glutamate synthase suggested that a conserved glutamyl residue of the synthase domain (E1013 of Synechocystis sp. PCC 6803 ferredoxin-dependent glutamate synthase, FdGltS) may play a key role in activating glutamine binding and hydrolysis and ammonia transfer to the synthase site in this amidotransferase, in response to the ligation and redox state of the synthase site. The E1013D, N, and A, variants of FdGltS were overproduced in Escherichia coli cells, purified, and characterized.

View Article and Find Full Text PDF

Glutamate synthases are complex iron-sulfur flavoproteins that participate in the essential ammonia assimilation pathway in microorganisms and plants. The recent determination of the 3-dimensional structures of the alpha subunit of the NADPH-dependent glutamate synthase form and of the ferredoxin-dependent enzyme of Synechocystis sp. PCC 6803 provides a framework for the interpretation of the functional properties of these enzymes, and highlights protein segments most likely involved in control and coordination of the partial catalytic activities of glutamate synthases, which take place at sites distant from each other in space.

View Article and Find Full Text PDF

Azospirillum brasilense glutamate synthase (GltS) is a complex iron-sulfur flavoprotein whose catalytically active alphabeta protomer (alpha subunit, 162kDa; beta subunit, 52.3 kDa) contains one FAD, one FMN, one [3Fe-4S](0,+1), and two [4Fe-4S](+1,+2) clusters. The structure of the alpha subunit has been determined providing information on the mechanism of ammonia transfer from L-glutamine to 2-oxoglutarate through a 30 A-long intramolecular tunnel.

View Article and Find Full Text PDF

Glutamate synthase (GltS) is, with glutamine synthetase, the key enzyme of ammonia assimilation in bacteria, microorganisms and plants. GltS isoforms result from the assembly and co-evolution of conserved functional domains. They share a common mechanism of reductive glutamine-dependent glutamate synthesis from 2-oxoglutarate, which takes place within the alpha subunit ( approximately 150 kDa) of the NADPH-dependent bacterial enzyme and the corresponding polypeptides of other GltS forms, and involves: (i) an Ntn-type amidotransferase domain and (ii) a flavin mononucleotide-containing (beta/alpha)(8) barrel synthase domain connected by (iii) a approximately 30 A-long intramolecular ammonia tunnel.

View Article and Find Full Text PDF

Glutamate synthase (GltS) is a complex iron-sulfur flavoprotein that catalyzes the reductive transfer of L-glutamine amide group to the C2 carbon of 2-oxoglutarate yielding two molecules of L-glutamate. Molecular dynamics calculations in explicit solvent were carried out to gain insight into the conformational flexibility of GltS and into the role played by the enzyme substrates in regulating the catalytic cycle. We have modelled the free (unliganded) form of Azospirillum brasilense GltS alpha subunit and the structure of the reduced enzyme in complex with the L-glutamine and 2-oxoglutarate substrates starting from the crystallographically determined coordinates of the GltS alpha subunit in complex with L-methionine sulphone and 2-oxoglutarate.

View Article and Find Full Text PDF

A set of racemic conformationally constrained analogues of the antitumor antibiotic acivicin (+)-1 has been prepared through a strategy based on 1,3-dipolar cycloaddition of bromonitrile oxide to suitable dipolarophiles. The bromo analogue (2) of acivicin was also synthesized and tested as a reference compound, together with its stereoisomer 3. The antitumor properties of novel amino acids 4-7 were evaluated in vitro against human tumor cell lines.

View Article and Find Full Text PDF

Glutamate synthases (GltS) are crucial enzymes in ammonia assimilation in plants and bacteria, where they catalyze the formation of two molecules of L-glutamate from L-glutamine and 2-oxoglutarate. The plant-type ferredoxin-dependent GltS and the functionally homologous alpha subunit of the bacterial NADPH-dependent GltS are complex four-domain monomeric enzymes of 140-165 kDa belonging to the NH(2)-terminal nucleophile family of amidotransferases. The enzymes function through the channeling of ammonia from the N-terminal amidotransferase domain to the FMN-binding domain.

View Article and Find Full Text PDF

Azospirillum brasilense glutamate synthase (GltS) is the prototype of bacterial NADPH-dependent enzymes, a class of complex iron-sulfur flavoproteins essential in ammonia assimilation processes. The catalytically active GltS alpha beta holoenzyme and its isolated alpha and beta subunits (162 and 52 kDa, respectively) were analyzed using synchrotron radiation x-ray solution scattering. The GltS alpha subunit and alpha beta holoenzyme were found to be tetrameric in solution, whereas the beta subunit was a mixture of monomers and dimers.

View Article and Find Full Text PDF

The properties of the recombinant ferredoxin-dependent glutamate synthase of Synechocystis PCC6803 were determined by means of kinetic and spectroscopic approaches in comparison to those exhibited by the bacterial NADPH-dependent enzyme form. The ferredoxin-dependent enzyme was found to be similar to the bacterial glutamate synthase alpha subunit with respect to cofactor content (one FMN cofactor and one [3Fe-4S] cluster per enzyme subunit), overall absorbance properties, and reactivity of the FMN N(5) position with sulfite, as expected from the similar primary structure of ferredoxin-dependent glutamate synthase and of the bacterial NADPH-dependent glutamate synthase alpha subunit. The ferredoxin- and NADPH-dependent enzymes were found to differ with respect to the apparent midpoint potential values of the FMN cofactor and of the [3Fe-4S] cluster, which are less negative in the ferredoxin-dependent enzyme form.

View Article and Find Full Text PDF

The complex iron-sulfur flavoprotein glutamate synthase (GltS) plays a prominent role in ammonia assimilation in bacteria, yeasts, and plants. GltS catalyzes the formation of two molecules of l-glutamate from 2-oxoglutarate and l-glutamine via intramolecular channeling of ammonia. GltS has the impressive ability of synchronizing its distinct catalytic centers to avoid wasteful consumption of l-glutamine.

View Article and Find Full Text PDF