Publications by authors named "Bruno Cozzi"

Introduction: The entorhinal cortex has been shown to be involved in high-level cognitive functions in terrestrial mammals. It can be divided into two main areas: the lateral entorhinal area (LEA) and the medial entorhinal area (MEA). Understanding of its structural organization in cetaceans is particularly important given the extensive evidence for their cognitive abilities.

View Article and Find Full Text PDF

Invasive neuronal tract-tracing is not permitted in very large or endangered animals. This is especially the case in marine mammals like dolphins. Diffusion-weighted imaging of fiber tracts could be an alternative if feasible even in brains that have been fixed in formalin for a long time.

View Article and Find Full Text PDF

Introduction: The auditory system of dolphins and whales allows them to dive in dark waters, hunt for prey well below the limit of solar light absorption, and to communicate with their conspecific. These complex behaviors require specific and sufficient functional circuitry in the neocortex, and vicarious learning capacities. Dolphins are also precocious animals that can hold their breath and swim within minutes after birth.

View Article and Find Full Text PDF

Infrared thermography (IRT) has been recently applied to measure lacrimal caruncle temperature non-invasively since this region is related to the sympathetic response, and it seems a promising technique that is able to infer negative emotions in sheep (e.g., fear).

View Article and Find Full Text PDF

Odontocetes primarily rely on fish, cephalopods, and crustaceans as their main source of nutrition. In the digestive system, their polygastric complex exhibits similarities to that of their closest terrestrial relatives such as cows, sheep, and giraffes, while the entero-colic tract shares similarities with terrestrial carnivores. The morphology, caliber, and structure of the odontocete intestine are relatively constant, and, since there is no caecum, a distinction between the small and large intestine and their respective subdivisions is difficult.

View Article and Find Full Text PDF

Throughout evolution, odontocete vision has had to readapt to the aquatic environment, which has had far-reaching effects on ocular anatomy and neurology. The most prominent features include the iris with an operculum, a well-developed choroid, the presence of giant ganglion cells in the retina, and the hemispherical shape of the thick eyecup. In the present study, the optic nerve and the retina were comparatively studied in Odontoceti (Cuvier's beaked whale, common bottlenose dolphin, false killer whale, long-finned pilot whale, Risso's dolphin, striped dolphin), the semi-aquatic common hippopotamus, and the fully terrestrial bovine.

View Article and Find Full Text PDF

The Mediterranean monk seal (Monachus monachus, Hermann, 1779) is an endangered species of pinniped endemic to few areas of the Mediterranean Sea. Extensive hunting and poaching over the last two centuries have rendered it a rare sight, scattered mainly in the Aegean Sea and the western coast of North Africa. In a rare event, a female monk seal calf stranded and died in southern Italy (Brindisi, Puglia).

View Article and Find Full Text PDF

Biosensors applied in veterinary medicine serve as a noninvasive method to determine the health status of animals and, indirectly, their level of welfare. Near infrared spectroscopy (NIRS) has been suggested as a technology with this application. This study presents preliminary time domain NIRS measurements of optical properties (absorption coefficient, reduced scattering coefficient, and differential pathlength factor) and hemodynamic parameters (concentration of oxygenated hemoglobin, deoxygenated hemoglobin, total hemoglobin, and tissue oxygen saturation) of tissue domestic animals, specifically of skeletal muscle (4 dogs and 6 horses) and head (4 dogs and 19 sheep).

View Article and Find Full Text PDF
Article Synopsis
  • Cetaceans, including dolphins, are recognized for their advanced cognitive skills such as self-recognition and decision-making, traditionally associated with the prefrontal cortex (PFC) in other mammals.
  • Existing methods to study the cetacean brain structure were limited, so this research utilized diffusion-weighted imaging (DWI) to explore the PFC in bottlenose dolphins, comparing findings to human brains.
  • The study identified new regions of the dolphin PFC, showing similarities in connectivity with the human PFC, and suggested that evolutionary adaptations may have influenced the observed structural differences.
View Article and Find Full Text PDF

We investigated the relationship between age and body length, and age at sexual maturity of individuals stranded along the Italian coast. Our molecular analysis shows that all our samples belong to the C.001.

View Article and Find Full Text PDF
Article Synopsis
  • Cetacean neuropathology is a growing area of study focused on understanding brain changes in marine mammals due to neurodegenerative diseases, trauma, and environmental impacts, particularly anthropogenic noise.
  • The research involved validating 12 antibodies in bottlenose dolphins to assess markers related to brain damage from acoustic trauma, highlighting the need for a systematic approach to ensure reliability.
  • Validation of markers like Apaf-1 and Bcl-2 showed patterns similar to other mammals, suggesting these antibodies could enhance diagnoses in cetacean neurological diseases and calling for standardized practices in this field.
View Article and Find Full Text PDF

Areas dedicated to higher brain functions such as the orbitofrontal cortex (OFC) are thought to be unique to hominidae. The OFC is involved in social behavior, reward and punishment encoding and emotional control. Here, we focused on the putative corresponding area in the sheep to assess its homology to the OFC in humans.

View Article and Find Full Text PDF

The killer whale (, Linnaeus, 1958) is the largest extant delphinid. Despite its worldwide distribution in the wild and in dolphinariums, its anatomy remains relatively poorly described. In the present study, we describe the detailed morphology of a plastinated killer whale heart.

View Article and Find Full Text PDF

Cetartiodactyls include terrestrial and marine species, all generally endowed with a comparatively lateral position of their eyes and a relatively limited binocular field of vision. To this day, our understanding of the visual system in mammals beyond the few studied animal models remains limited. In the present study, we examined the primary visual cortex of Cetartiodactyls that live on land (sheep, Père David deer, giraffe); in the sea (bottlenose dolphin, Risso's dolphin, long-finned pilot whale, Cuvier's beaked whale, sperm whale and fin whale); or in an amphibious environment (hippopotamus).

View Article and Find Full Text PDF

The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs ().

View Article and Find Full Text PDF

Compared with other mammals, the digestive system of cetaceans presents some remarkable anatomical and physiological differences. However, the neurochemical features of the enteric nervous system (ENS) in these animals have only been described in part. The present study gives a description of the nitrergic and selected peptidergic systems in the myenteric plexus (MP) and submucosal plexus (SMP) of the intestine of the bottlenose dolphin ().

View Article and Find Full Text PDF

This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). A compact and wearable single-channel TD fNIRS oximeter was employed.

View Article and Find Full Text PDF

The lungs of cetaceans undergo anatomical and physiological adaptations that facilitate extended breath-holding during dives. Here, we present new insights on the ontogeny of the microscopic anatomy of the terminal portion of the airways of the lungs in five cetacean species: the fin whale (Balaenoptera physalus); the sperm whale (Physeter macrocephalus), the Cuvier's beaked whale (Ziphius cavirostris); the bottlenose dolphin (Tursiops truncatus); and the striped dolphin (Stenella coeruleoalba). We (a) studied the histology of the terminal portion of the airways; (b) used immunohistochemistry (IHC) to characterize the muscle fibers with antibodies against smooth muscle (sm-) actin, sm-myosin, and desmin; (c) the innervation of myoelastic sphincters (MESs) with an antibody against neurofilament protein; and (d) defined the diameter of the terminal bronchioles, the diameter and length of the alveoli, the thickness of the septa, the major and minor axis, perimeter and section area of the cartilaginous rings by quantitative morphometric analyses in partially inflated lung tissue.

View Article and Find Full Text PDF

Previous reports suggested the existence of direct somatic motor control over heart rate ( ) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O and CO can be exchanged with minimal exchange of N. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N exchange.

View Article and Find Full Text PDF

The visual system of cetaceans is at best poorly understood. With a handful of electrophysiological studies and a limited number of histological preparations from well-preserved specimen, the investigation of the principles underlying the cortical organization in cetaceans remains a challenge. In the course of our current investigation, we identified the transition from V2 to V1 in the long-finned pilot whale Globicephala melas, only recognizable through immunocytochemistry, and a similar if not homologue transition in the sheep Ovis aries.

View Article and Find Full Text PDF
Article Synopsis
  • Vibrissae are specialized tactile hairs found on many mammals, including bottlenose dolphins, where they are part of the follicle-sinus complex (FSC) that has a complex innervation and blood supply.
  • Recent studies indicate that the FSC in river-dwelling dolphins may serve as an electroreceptor in murky waters, while the study aimed to understand the morphology and innervation of the FSC in both newborn and adult bottlenose dolphins.
  • Analysis reveals that the FSC is similar to terrestrial mammals but with unique features; newborns likely use it as a mechanoreceptor to locate their mother's nipples, whereas the function in adults remains less defined.
View Article and Find Full Text PDF

The evolution of the brain in apes and man followed a joint pathway stemming from common ancestors 5-10 million years ago. However, although apparently sharing similar organization and neurochemical properties, association areas of the isocortex remain one of the cornerstones of what sets humans aside from other primates. Brodmann's area 44, the area of Broca, is known for its implication in speech, and thus indirectly is a key mark of human uniqueness.

View Article and Find Full Text PDF

The aim of this work was to critically assess if functional near infrared spectroscopy (fNIRS) can be profitably used as a tool for noninvasive recording of brain functions and emotions in sheep. We considered an experimental design including advances in instrumentation (customized wireless multi-distance fNIRS system), more accurate physical modelling (two-layer model for photon diffusion and 3D Monte Carlo simulations), support from neuroanatomical tools (positioning of the fNIRS probe by MRI and DTI data of the very same animals), and rigorous protocols (motor task, startling test) for testing the behavioral response of freely moving sheep. Almost no hemodynamic response was found in the extra-cerebral region in both the motor task and the startling test.

View Article and Find Full Text PDF

The present study analyses the organization and selected neurochemical features of the claustrum and visual cortex of the sheep, based on the patterns of calcium-binding proteins expression. Connections of the claustrum with the visual cortex have been studied by tractography. Parvalbumin-immunoreactive (PV-ir) and Calbindin-immunoreactive (CB-ir) cell bodies increased along the rostro-caudal axis of the nucleus.

View Article and Find Full Text PDF