Publications by authors named "Bruno Coutard"

The reverse transcriptase of Moloney Murine Leukemia Virus (MMLV) is an enzyme that synthesizes DNA from an RNA template. Among reverse transcriptases, this enzyme is currently the most commonly used in molecular biology and diagnostics. Since its discovery, this viral protein has been extensively studied, shedding light on its structural and functional characteristics, and offering opportunities to optimize the catalytic performances for biotechnological applications.

View Article and Find Full Text PDF

Remdesivir (RDV, Veklury®) is the first FDA-approved antiviral treatment for COVID-19. It is a nucleotide analogue (NA) carrying a 1'-cyano (1'-CN) group on the ribose and a pseudo-adenine nucleobase whose contributions to the mode of action (MoA) are not clear. Here, we dissect these independent contributions by employing RDV-TP analogues.

View Article and Find Full Text PDF

Phenuiviridae nucleoprotein is the main structural and functional component of the viral cycle, protecting the viral RNA and mediating the essential replication/transcription processes. The nucleoprotein (N) binds the RNA using its globular core and polymerizes through the N-terminus, which is presented as a highly flexible arm, as demonstrated in this article. The nucleoprotein exists in an `open' or a `closed' conformation.

View Article and Find Full Text PDF

Viruses are known to infect most types of organisms. In humans, they can cause several diseases that range from mild to severe. Although many antiviral therapies have been developed, viral infections continue to be a leading cause of morbidity and mortality worldwide.

View Article and Find Full Text PDF

Enteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections.

View Article and Find Full Text PDF

The COVID-19 pandemic reveals the urgent need to develop new therapeutics targeting the SARS-CoV-2 replication machinery. The first antiviral drugs were nucleoside analogues targeting RdRp and protease inhibitors active on nsp5 Mpro. In addition to these common antiviral targets, SARS-CoV-2 codes for the highly conserved protein nsp14 harbouring N7-methyltransferase (MTase) activity.

View Article and Find Full Text PDF

RNA 2'O-methylation is a 'self' epitranscriptomic modification allowing discrimination between host and pathogen. Indeed, human immunodeficiency virus 1 (HIV-1) induces 2'O-methylation of its genome by recruiting the cellular FTSJ3 methyltransferase, thereby impairing detection by RIG-like receptors. Here, we show that RNA 2'O-methylations interfere with the antiviral activity of interferon-stimulated gene 20-kDa protein (ISG20).

View Article and Find Full Text PDF

Jingmenviruses are a group of viruses identified recently, in 2014, and currently classified by the International Committee on Taxonomy of Viruses as unclassified . These viruses closely related to flaviviruses are unique due to the segmented nature of their genome. The prototype jingmenvirus, Jingmen tick virus (JMTV), was discovered in ticks collected from China in 2010.

View Article and Find Full Text PDF

The genome of Hepatitis E virus (HEV) is 7.2 kilobases long and has three open reading frames. The largest one is ORF1, encoding a non-structural protein involved in the replication process, and whose processing is ill-defined.

View Article and Find Full Text PDF

Viral exoribonucleases are uncommon in the world of RNA viruses. To date, they have only been identified in the Arenaviridae and the Coronaviridae families. The exoribonucleases of these viruses play a crucial role in the pathogenicity and interplay with host innate immune response.

View Article and Find Full Text PDF

Enzymes involved in RNA capping of SARS-CoV-2 are essential for the stability of viral RNA, translation of mRNAs, and virus evasion from innate immunity, making them attractive targets for antiviral agents. In this work, we focused on the design and synthesis of nucleoside-derived inhibitors against the SARS-CoV-2 nsp14 (7-guanine)-methyltransferase (7-MTase) that catalyzes the transfer of the methyl group from the -adenosyl-l-methionine (SAM) cofactor to the 7-guanosine cap. Seven compounds out of 39 SAM analogues showed remarkable double-digit nanomolar inhibitory activity against the 7-MTase nsp14.

View Article and Find Full Text PDF

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directs infection of the lungs and other tissues following its binding to the angiotensin-converting enzyme 2 (ACE2) receptor. For effective infection, the S protein is cleaved at two sites: S1/S2 and S2'. The "priming" of the surface S protein at S1/S2 (PRA↓) [the underlined basic amino acids refer to critical residues needed for the furin recognition] by furin has been shown to be important for SARS-CoV-2 infectivity in cells and small-animal models.

View Article and Find Full Text PDF

Bee venom (BV) is one of the most remarkable natural products that has been a subject of studies since ancient times. Recent studies have shown that venom possesses antibacterial as well as cytotoxic effects on cancer cell lines. The venom contains a variety of bioactive molecules-mainly melittin (MEL) and phospholipase A2 (PLA2), as well as other compounds that are not well characterized.

View Article and Find Full Text PDF

Engineering recombinant viruses is a pre-eminent tool for deciphering the biology of emerging viral pathogens such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the large size of coronavirus genomes renders the current reverse genetics methods challenging. Here, we describe a simple method based on "infectious subgenomic amplicons" (ISA) technology to generate recombinant infectious coronaviruses with no need for reconstruction of the complete genomic cDNA and apply this method to SARS-CoV-2 and also to the feline enteric coronavirus.

View Article and Find Full Text PDF
Article Synopsis
  • Enteroviruses cause many illnesses worldwide, and a protein called 2C is important for their reproduction.
  • Researchers found that certain drugs, like fluoxetine, can stop 2C from working, but they didn’t know exactly how this happened.
  • By studying the 2C protein's structure, they discovered that fluoxetine and other compounds bind to it in a special way, which helps explain how they prevent it from functioning properly.
View Article and Find Full Text PDF
Article Synopsis
  • Serological tests are crucial for managing COVID-19, focusing on diagnostics, surveillance, and immunity studies.
  • A new plasmonic biosensor assay identifies SARS-CoV-2 antibodies in under 15 minutes using a custom-designed sensor, without needing signal amplification.
  • Clinical validation shows the biosensor offers high diagnostic sensitivity (99%) and specificity (100%), making it a reliable tool for rapid COVID-19 serology in various settings.
View Article and Find Full Text PDF

Since the beginning of the COVID-19 pandemics, variants have emerged. Some of them display increased transmissibility and/or resistance to immune response. Most of the mutations involved in the functional adaptation are found in the receptor-binding motif (RBM), close to the interface with the receptor ACE2.

View Article and Find Full Text PDF

Venezuelan equine encephalitis virus (VEEV) is a reemerging arthropod-borne virus causing encephalitis in humans and domesticated animals. VEEV possesses a positive single-stranded RNA genome capped at its 5' end. The capping process is performed by the nonstructural protein nsP1, which bears methyl and guanylyltransferase activities.

View Article and Find Full Text PDF

Colon carcinogenesis is ranked second globally among human diseases after cardiovascular failures. Bee venom (BV) has been shown to possess in vitro anticancer effects against several types of cancer cells. The two main biopeptides of BV, namely, melittin (MEL) and phospholipase A2 (PLA2), are suspected to be the biomolecules responsible for the anticancer activity.

View Article and Find Full Text PDF

A series of hitherto unknown (1,4-disubstituted-1,2,3-triazol)-()-2-methyl-but-2-enyl nucleosides phosphonate prodrugs bearing 4-substituted-1,2,3-triazoles were prepared in a straight approach through an olefin acyclic cross metathesis as the key synthetic step. All novel compounds were evaluated for their antiviral activities against HBV, HIV and SARS-CoV-2. Among these molecules, only compound , a hexadecyloxypropyl (HDP)/(-oxymethyl)-ester (POC) prodrug, showed activity against HBV in Huh7 cell cultures with 62% inhibition at 10 μM, without significant cytotoxicity (IC = 66.

View Article and Find Full Text PDF

Despite no or limited pre-clinical evidence, repurposed drugs are massively evaluated in clinical trials to palliate the lack of antiviral molecules against SARS-CoV-2. Here we use a Syrian hamster model to assess the antiviral efficacy of favipiravir, understand its mechanism of action and determine its pharmacokinetics. When treatment is initiated before or simultaneously to infection, favipiravir has a strong dose effect, leading to reduction of infectious titers in lungs and clinical alleviation of the disease.

View Article and Find Full Text PDF

The Ebola virus is a deadly human pathogen responsible for several outbreaks in Africa. Its genome encodes the 'large' L protein, an essential enzyme that has polymerase, capping and methyltransferase activities. The methyltransferase activity leads to RNA co-transcriptional modifications at the N7 position of the cap structure and at the 2'-O position of the first transcribed nucleotide.

View Article and Find Full Text PDF

When a new virus emerges and causes a significant epidemic, the emergency response relies on diagnostics, surveillance, testing, and proposal of treatments if they exist, and also in the longer term, redirection of research efforts toward understanding the newly discovered pathogen. To serve these goals, viral biobanks play a crucial role. The European Virus Archive (EVA) is a network of biobanks from research laboratories worldwide that has combined into a common set of practices and mutually beneficial objectives to give scientists the tools that they need to study viruses in general, and also to respond to a pandemic caused by emerging viruses.

View Article and Find Full Text PDF