Publications by authors named "Bruno Chavez-Vergara"

Soil respiration (CO emission to the atmosphere from soils) is an important component of the global carbon cycle. In highly seasonal ecosystems the magnitudes and the underlying mechanisms that control soil respiration (R) are still poorly understood and measurements are underrepresented in the global flux community. In this dataset, systematic and monthly measurements of R were conducted with an infrared gas analyzer coupled to a static chamber during 2015, 2016, 2017 and 2019 in a tropical dry forest with a land use history from Northwestern México.

View Article and Find Full Text PDF

In Mexico, millions of tons of mining wastes are deposited in the open pit. Their content in potentially toxic elements (PTE) represents an environmental risk. In the tailings, pioneer plant communities are established, associated with a determined diversity of fungi; plants, and fungi are fundamental in the natural rehabilitation of mining wastes.

View Article and Find Full Text PDF

As a consequence of industrial mining activity, high volumes of tailings are scattered around Mexico. Frequently, tailings contain heavy metals (HM) which entail threats against all organisms. The aim of this research was to identify plants and root fungal endophytes in polymetallic polluted tailings with the potential to be used in strategies of bioremediation.

View Article and Find Full Text PDF

Past mining activities have left a legacy of abandoned mine tailing deposits whose metal contaminants poses serious risks to ecosystems and human health. While the development of a vegetated cover in mine tailings can help in mitigating these risks, the local factors limiting plant establishment in these sites are not well understood, restricting phytostabilization efforts. Here, we explore some of the barriers that limit seedling establishment of two species (Vachellia farnesiana and Prosopis velutina) in a mine tailing deposit located in Nacozari, Sonora, Mexico, and assess whether compost addition can help in overcoming these barriers in pot and field experiments.

View Article and Find Full Text PDF

The highland forests of tropical regions are highly vulnerable to climate change because changes in soil organic quality due to the increased soil water deficit conditions through rising temperatures. Several authors have reported that labile molecules dominate soil organic matter at higher elevations, and it is therefore more vulnerable to the rising temperatures associated with climate change. The objective of the present study was to analyze the effect of interaction between the chemical composition of organic matter derived from the dominant plant species and the metabolism of microbial community along an elevational gradient in a highland forest in Central Mexico.

View Article and Find Full Text PDF

Background: Litter decomposition is a key process in the functioning of forest ecosystems, because it strongly controls nutrient recycling and soil fertility maintenance. The interaction between the litter chemical composition and the metabolism of the soil microbial community has been described as the main factor of the decomposition process based on three hypotheses: substrate-matrix interaction (SMI), functional breadth (FB) and home-field advantage (HFA). The objective of the present study was to evaluate the effect of leaf litter quality (as a direct plant effect, SMI hypothesis), the metabolic capacity of the microbial community (as a legacy effect, FB hypothesis), and the coupling between the litter quality and microbial activity (HFA hypothesis) on the litter decomposition of two contiguous deciduous oak species at a local scale.

View Article and Find Full Text PDF

Simple, rapid and reliable methods of assessing soil burn severity (SBS) are required in order to prioritize post-fire emergency stabilization actions. SBS proxies based on visual identification and changes in soil organic matter (SOM) content and quality can be related to other soil properties in order to determine the extent to which soil is perturbed following fire. This task is addressed in the present study by an approach involving the use of differential scanning calorimetry-thermogravimetric analysis (DSC-TGA) to determine changes in SOM generated in soils subjected to different levels of SBS.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionlank10vbi7t3eublaqiac7uok9llvob3): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once