Publications by authors named "Bruno Catimel"

The canonical view of PI3Kα signaling describes phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) generation and activation of downstream effectors at the plasma membrane or at microtubule-bound endosomes. Here, we show that colorectal cancer (CRC) cell lines exhibit a diverse plasma membrane-nuclear distribution of PI3Kα, controlling corresponding levels of subcellular PtdIns(3,4,5)P pools. PI3Kα nuclear translocation was mediated by the importin β-dependent nuclear import pathway.

View Article and Find Full Text PDF

PDGF-CC is a member of the platelet-derived growth factor (PDGF) family that stimulates PDGFRα phosphorylation and thereby activates intracellular signalling events essential for development but also in cancer, fibrosis and neuropathologies involving blood-brain barrier (BBB) disruption. In order to elucidate the biological and pathological role(s) of PDGF-CC signalling, we have generated high affinity neutralizing monoclonal antibodies (mAbs) recognizing human PDGF-CC. We determined the complementarity determining regions (CDRs) of the selected clones, and mapped the binding epitope for clone 6B3.

View Article and Find Full Text PDF

ADP-ribosylation is an important posttranslational protein modification that regulates diverse biological processes, controlled by dedicated transferases and hydrolases. Here, we show that frequent deletions (∼30%) of the mono-ADP-ribosylhydrolase locus in human colorectal cancer cause impaired PARP1 transferase activity in a gene dosage-dependent manner. haploinsufficiency alters DNA repair and sensitivity to DNA damage and results in chromosome instability.

View Article and Find Full Text PDF

Background: C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis.

View Article and Find Full Text PDF

IgG has a long half-life through engagement of its Fc region with the neonatal Fc receptor (FcRn). The FcRn binding site on IgG1 has been shown to contain I253 and H310 in the CH2 domain and H435 in the CH3 domain. Altering the half-life of IgG has been pursued with the aim to prolong or reduce the half-life of therapeutic IgGs.

View Article and Find Full Text PDF

Inositol hexakisphosphate (InsP6 or IP6) is an important signalling molecule in vesicular trafficking, neurotransmission, immune responses, regulation of protein kinases and phosphatases, activation of ion channels, antioxidant functions and anticancer activities. An IP6 probe was synthesised from myo-inositol via a derivatised analogue, which was immobilised through a terminal amino group onto Dynabeads. Systematic analysis of the IP6 interactome has been performed using the IP6 affinity probe using cytosolic extracts from the LIM1215 colonic carcinoma cell line.

View Article and Find Full Text PDF

Dephosphorylation of four major C-terminal tail sites and occupancy of the phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]-binding site of PTEN cooperate to activate its phospholipid phosphatase activity and facilitate its recruitment to plasma membrane. Our investigation of the mechanism by which phosphorylation of these C-terminal sites controls the PI(4,5)P2-binding affinity and catalytic activity of PTEN resulted in the following findings. First, dephosphorylation of all four sites leads to full activation; and phosphorylation of any one site significantly reduces the intrinsic catalytic activity of PTEN.

View Article and Find Full Text PDF

Background: Gliding motility in Plasmodium parasites, the aetiological agents of malaria disease, is mediated by an actomyosin motor anchored in the outer pellicle of the motile cell. Effective motility is dependent on a parasite myosin motor and turnover of dynamic parasite actin filaments. To date, however, the basis for directional motility is not known.

View Article and Find Full Text PDF

Actin depolymerizing factor (ADF)/cofilins are essential regulators of actin turnover in eukaryotic cells. These multifunctional proteins facilitate both stabilization and severing of filamentous (F)-actin in a concentration-dependent manner. At high concentrations ADF/cofilins bind stably to F-actin longitudinally between two adjacent actin protomers forming what is called a decorative interaction.

View Article and Find Full Text PDF

The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr(530) in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated.

View Article and Find Full Text PDF

Background: The adenomatous polyposis coli (APC) tumour suppressor gene encodes a 2843 residue (310 kDa) protein. APC is a multifunctional protein involved in the regulation of β-catenin/Wnt signalling, cytoskeletal dynamics and cell adhesion. APC mutations occur in most colorectal cancers and typically result in truncation of the C-terminal half of the protein.

View Article and Find Full Text PDF

A novel 18 amino acid peptide PYC98 was demonstrated to inhibit JNK1 activity toward c-Jun. We observed a 5-fold increase in the potency of the retro-inverso form, D-PYC98 (a D-amino acid peptide in the reversed sequence) when compared with the inhibition achieved by L-PYC98, prompting our further evaluation of the D-PYC98 inhibitory mechanism. In vitro assays revealed that, in addition to the inhibition of c-Jun phosphorylation, D-PYC98 inhibited the JNK1-mediated phosphorylation of an EGFR-derived peptide, the ATF2 transcription factor, and the microtubule-regulatory protein DCX.

View Article and Find Full Text PDF

Unlabelled: A comprehensive analysis of the phosphoinositide interactome has been performed using an ω-amino analogue of phosphatidylinositol 3-phosphate (PI(3)P immobilised onto Affi-10 beads for use as an affinity absorbent for cytosolic, membrane and nuclear extracts from the LIM1215 colonic carcinoma cell line. Affinity/LC/MS/MS experiments allowed the identification of 681 proteins/protein complexes which interact with PI(3)P. Protein domain enrichment analysis identified proteins possessing PI(3)P (e.

View Article and Find Full Text PDF

Gastrointestinal cancers are frequently associated with chronic inflammation and excessive secretion of IL-6 family cytokines, which promote tumorigenesis through persistent activation of the GP130/JAK/STAT3 pathway. Although tumor progression can be prevented by genetic ablation of Stat3 in mice, this transcription factor remains a challenging therapeutic target with a paucity of clinically approved inhibitors. Here, we uncovered parallel and excessive activation of mTOR complex 1 (mTORC1) alongside STAT3 in human intestinal-type gastric cancers (IGCs).

View Article and Find Full Text PDF

The activation of the epidermal growth factor receptor (EGFR) kinase requires ligand binding to the extracellular domain (ECD). Previous reports demonstrate that the EGFR-ECD can be crystallized in two conformations - a tethered monomer or, in the presence of ligand, an untethered back-to-back dimer. We use Biosensor analysis to demonstrate that even in the monomeric state different C-terminal extensions of both truncated (EGFR(1-501))-ECD and full-length EGFR(1-621)-ECD can change the conformation of the ligand-binding site.

View Article and Find Full Text PDF

β-catenin is a signaling protein with diverse functions in cell adhesion and Wnt signaling. Although β-catenin has been shown to participate in many protein-protein interactions, it is not clear which combinations of β-catenin-interacting proteins form discrete complexes. We have generated a novel antibody, termed 4B3, which recognizes only a small subset of total cellular β-catenin.

View Article and Find Full Text PDF

C-Terminal Src kinase-homologous kinase (CHK) exerts its tumor suppressor function by phosphorylating the C-terminal regulatory tyrosine of the Src-family kinases (SFKs). The phosphorylation suppresses their activity and oncogenic action. In addition to phosphorylating SFKs, CHK also performs non-SFK-related functions by phosphorylating other cellular protein substrates.

View Article and Find Full Text PDF

Malaria parasite cell motility is a process that is dependent on the dynamic turnover of parasite-derived actin filaments. Despite its central role, actin's polymerization state is controlled by a set of identifiable regulators that is markedly reduced compared with those of other eukaryotic cells. In Plasmodium falciparum, the most virulent species that affects humans, this minimal repertoire includes two members of the actin-depolymerizing factor/cofilin (AC) family of proteins, P.

View Article and Find Full Text PDF

Studies employing mouse models have identified crypt base and position +4 cells as strong candidates for intestinal epithelial stem cells. Equivalent cell populations are thought to exist in the human intestine; however robust and specific protein markers are lacking. Here, we show that in the human small and large intestine, PHLDA1 is expressed in discrete crypt base and some position +4 cells.

View Article and Find Full Text PDF

An improved understanding of the roles of protein kinases in intracellular signalling and disease progression has driven significant advances in protein kinase inhibitor discovery. Peptide inhibitors that target the kinase protein substrate-binding site have continued to attract attention. In the present paper, we describe a novel JNK (c-Jun N-terminal kinase) inhibitory peptide PYC71N, which inhibits JNK activity in vitro towards a range of recombinant protein substrates including the transcription factors c-Jun, ATF2 (activating trancription factor 2) and Elk1, and the microtubule regulatory protein DCX (doublecortin).

View Article and Find Full Text PDF

We have developed an immunocytochemistry method for the semiquantitative detection of phosphatidylinositol (3,4,5)-trisphosphate (PI(3,4,5)P3) at the cell plasma membrane. This protocol combines the use of a glutathione S-transferase-tagged pleckstrin homology (PH) domain of the general phosphoinositides-1 receptor (GST-GRP1PH) with fluorescence confocal microscopy and image segmentation using cell mask software analysis. This methodology allows the analysis of PI(3,4,5)P3 subcellular distribution in resting and epidermal growth factor (EGF)-stimulated HEK293T cells and in LIM1215 (wild-type phosphoinositide 3-kinase (PI3K)) and LIM2550 (H1047R mutation in PI3K catalytic domain) colonic carcinoma cells.

View Article and Find Full Text PDF

The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs.

View Article and Find Full Text PDF

Immobilizing chemically synthesized analogues of PI(3,4,5)P3 onto Affi-10 beads and incorporating them into liposomes allowed their use as affinity absorbents in the comprehensive analysis of the phosphoinositide interactome using cytosolic cell extracts of the LIM1215 colon cancer cell line. This led to the identification of 282 proteins that either interact with PI(3,4,5)P3 or are indirectly captured as part of a complex containing a PI(3,4,5)P3 binding partner. Identification of the proteins was achieved using affinity/LC-MS/MS experiments.

View Article and Find Full Text PDF

A comprehensive analysis of the phosphoinositide interactome has been performed using analogues of PI(3,5)P2 and PI(4,5)P2 phosphatidyl phospholipids which were immobilized onto Affi-10 beads or incorporated into liposomes for use as affinity absorbents with cytosolic extracts from colonic carcinoma cell lines. Affinity/LC/MS/MS experiments allowed identification of 388 proteins/protein complexes that appeared to interact specifically with the phosphoinositide targets: a number of novel potential phosphoinositide interacting proteins have been identified.

View Article and Find Full Text PDF

Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells.

View Article and Find Full Text PDF